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결합 분포에 기초한 2계 마코비안 도착과정의 생성에 관한 연구
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Generation of the Markovian Arrival Process of Order 2 Based on 
Joint Distribution

Sunkyo Kim

School of Business, Ajou University

In queueing network analysis, the Markovian arrival process, MAP, can be used as approximating arrival or 
departure processes. While the renewal processes such as Poisson process can be generated based on the 
marginal moments, the Markovian arrival process requires lag-1 joint moment or joint distribution function. In 
fact, the Markovian arrival process can be simulated by two transition rate matrices, (D0, D1), which is called the 
Markovian representation. However, finding a Markovian representation of higher order involves a numerically 
iterative procedure due to redundancy in the Markovian representation. Since there is one-to-one correspondence 
between joint moments and the coefficients of the joint Laplace transform, generating a MAP based on joint 
distribution can be much less complicated. In this paper, we propose an approach to generate a MAP based on 
joint distribution function which can be quickly obtained from joint moments and joint Laplace transform. 
Closed form formula and streamlined procedures are given for the simulation of MAP of order 2.

†   
Keywords: Markovian Arrival Process, Moment Matching, Laplace Transform, Lag-1 Joint Distribution Of 

Intervals

1. Introduction

The Markovian arrival process, MAP, can be generated by two 
transition rate matrices (D0, D1) which is called the Markovian 
representation. However, finding a Markovian representation of 
higher order MAP by moment matching is quite complicated due 
to redundancy of transition rate matrices (D0, D1). On the other 
hand, however, the moment matching is straightforward for the 
Laplace transform (LT) of which minimal representation is 
known; see Kim (2016) for details. It is well known that the mini-
mal number of parameters for a MAP() is ; see Bodrog et al. 
(2008), Casale et al. (2010) and Telek et al. (2007) for details. 
Since the minimal LT representation is available for the MAP of 

any order, the parameters of the LT can be obtained in closed 
form by moment matching whereas closed - form transformation 
is not available from moments to the Markovian representation 
(D0, D1) except for the MAP of order 2, MAP(2); see Bodrog et 
al. (2008), Kim (2017), Ramirez-Cobo et al. (2010, 2012) for 
details.

As for generating or simulating a MAP is concerned, the lag-1 
joint distribution can be used instead of the Markovian representa-
tion (D0, D1). A minimal joint LT can be easily converted into a 
joint distribution by LT inversion. If the inverse LT is not in ex-
plicit form of known distribution function, a simple algebraic ma-
nipulation can be used to determine exact distribution which is 
needed for generating a MAP. We are interested in the problem of 
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obtaining a simulation - ready joint distribution from the set of 
minimal moments and minimal joint LT. We focus only on 
MAP(2) in this paper even though our approach can be general-
ized to MAP of higher order.

The paper is organized as follows. In Section 2, we review 
known results on the representation of MAP(2)s. Then, we pres-
ent main result on the joint distribution of stationary intervals of a 
MAP(2) by inversion of joint LT in Section 3 followed by the nu-
merical examples given in Section 4. We conclude in Section 5 
with discussions on future direction of research.

2. Preliminaries

2.1 Markovian representation (D 0, D 1)

A MAP(2) is fully described by the two transition rate matrices 
(D0, D1) given in terms of six rate parameters (    
 ), i.e.

  



  

  




 ,   




 

 






where ( ) = (   ). Each off - diagonal 
rate parameter of D0 represents the transition rate out of a given 
phase into another phase but without invoking an arrival whereas 
each rate parameter of D1 represents the transition rate invoking 
an arrival with or without changing phase. Let Q = D0 + D1 and P 
= D1. Then, Q is an infinitesimal generator for the con-
tinuous time Markov chain whereas P is the transition probability 
matrix for the embedded discrete time Markov chain. Let p be the 
stationary probability vector for P, i.e. pP = p and pe = 1 where e 
is a vector of ones.

2.2 Moments and the Laplace transform

Let Ti be the i-th stationary interval of a MAP. Then, the mar-
ginal moments and the lag-1 joint moments are obtained as fol-
lows


  






  




respectively. In order to simplify the notation, we use reduced 
moments defined as

  


  




A MAP(2) can be completely described by three marginal mo-
ments (  ) and one joint moment . In fact, a MAP() is 
completely described by   marginal moments and 
 lag-1 joint moments; see Casale et al. (2010) and Telek 
et al. (2007) for a minimal set of moments for MAP()s.

It was shown in Kim (2016) that the lag-1 joint Laplace transform 
(LT) of stationary intervals of MAP()s can be written in terms of 
 parameters. Especially for MAP(2)s, the marginal and lag-1 joint 
LTs can be written in terms of (   ) as follows

   
  

  (2.1)

   (2.2)

              

   


where (   ) = (   , Trace( ),  
 ). A 

MAP(2) can be completely described by Eq. (2.2) which is given 
in terms of four coefficients (   ). 

2.3 Jordan Representation

Another minimal representation used in our study is the Jordan 
representation given in two matrices (E, R); see Telek et al. 
(2007) and Kim (2020) for details. A MAP() can be represented 
by two × matrices (E, R) given in terms of  parameters. 
The diagonal entries of the matrix E are eigenvalues of 

 . 
The matrix R accounts for lag-1 correlation and satisfies   ; 
see Telek et al. (2007) for details.

For a MAP(2), let    be the eigenvalues of 
  with 

 ≥ . For the case of distinct eigenvalues, (E, R) can be writ-
ten in terms of     , i.e.

 



 

 




 ,  




 

 






If   , the E is written as

 



 

 




 .

The marginal moments and the lag-1 joint moments are ob-
tained as 

   = (     )

where       . Again, by matching 
moments      can be determined by     . 
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3. Joint Distribution and Lag-1 Conditional Distribution

In this section, we propose a new approach in generating a MAP 
without (D0, D1). We present closed - form formula for trans-
formation of the joint LT to explicit joint distribution by which 
stationary intervals are generated.

Since moments can be obtained from the marginal and joint 
LTs in (2.1) and (2.2), the LT coefficients of the (   ) 
can be uniquely determined from moments as follows

       








 


 




 

 







      


 

 
 

   
  



of which details can be found in Kim (2016, 2017).
For the inversion of the marginal and joint LTs, we consider the 

case of distinct eigenvalues and the case of identical eigenvalues 
separately. First, Let X and Y  be the random variables represent-
ing two consecutive stationary intervals of a MAP(2). 

3.1 Distinct eigenvalues

If    has distinct eigenvalues, then   can 
be determined as roots of the characteristic polynomial equation 
given as     . Assuming, WLOG, that   , we 
have

 







 
 



 
 








and 

    

   
  

    
by moment matching based on Eq. (2.3). Again, by moment 
matching, the following equations can be obtained to write the 
marginal and joint LTs in (2.1) and (2.2) in terms of 
     

    




 
 

  

 



 


 

 


By inversion of the LT in (2.1) and (2.2) given in terms of 
    , we get the following marginal and lag-1 joint 
density functions 

  




 




 (3.1)

 







  




   (3.2)

                    




  







 

where 

   


 

    




                   


   




Note that        . Depending on the 
sign of , the marginal distribution of a stationary interval is ei-
ther hyper-exponential or mixed generalized Erlang (MGE). In or-
der to simplify the notation, let   and   be the ex-
ponential density function each with mean  and  respectively, 
i.e.

  




   






Also, let   be the density function of the hypo-ex-
ponential distribution that is a sum of two independent ex-
ponential random variables each with mean  and , i.e.

  




 




Below, we denote this hypo-exponential distribution by 
Hypoexp  .

(1) Hyper-exponential distribution: > 0
If > 0, then we have      . Since     , the 

marginal distribution of a stationary interval in (3.1) can be re-
written as 

   

and therefore X is a hyper-exponential, i.e.

∼ 

 
(3.3)

The joint density function (3.2) can be written as

   

                       
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By the definition of conditional probability, the conditional 
density function is given as

   

 



                  

 



by which the conditional distribution of Y given X is again hy-
per-exponential. That is, If X ~Exp(1/), then the conditional dis-
tribution of Y is

     ∼ ∼ 

 
(3.4)

Otherwise, if X ~ Exp(1/), then the conditional distribution of 
Y is

   ∼ ∼ 

 
(3.5)

(2) MGE(2):  < 0
If  < 0, then we have       and the marginal dis-

tribution in (3.1) is not hyper-exponential. By a simple manipu-
lation, however, it can be shown that the marginal distribution is a 
mixed generalized Erlang, i.e.

   

where

  


 

 
                         

 
 

  

That is, 

∼ 

 
(3.6)

The joint density function is written as

   

                              

where

    















  


   

  


   

 




 




By the definition of conditional probability, the conditional 
density function is given as

   

 



                      

 



by which the conditional distribution of Y given X is either ex-
ponential or hypo-exponential. That is, if X ~ Exp(1/), then the 
conditional distribution of Y is

 ∼
∼

 


  

(3.7)

or if X ~ Hypoexp(1/ , 1/), then the conditional distribution 
of Y is

∣∼ 

∼
 






 


(3.8)

3.2 Identical Eigenvalues

If 
  has identical eigenvalues, i.e.  = , then we have 


   in Eq. (2.1) and we have    and 

   

  
 

  
along with

  








  

 

  




 


 

  

Let   be the density function of the Erlang(2, 1/) dis-
tribution that is a sum of two independent and identical ex-
ponential random variables with mean  i.e.
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 









Then, by inverse LT, the marginal LT in Eq. (2.1) is converted 
into the following marginal density function

   

where      . That is, 

 ∼ 

 
(3.9)

The joint LT given in Eq. (2.2), by inverse LT, is converted in-
to the following joint density function.

   

                       

where

    






           







   


   

  


   

 




 




By the definition of conditional probability, the conditional 
density function is given as

   

 



                     

 



by which the conditional distribution of Y given X is either ex-
ponential or Erlang. That is, 

 ∼ ∼ 

 
 

                                                                                            (3.10)

or if X ~ Erlang(2,1/), then the conditional distribution of Y is 

 ∼
∼

 


  

(3.11)

4. Numerical Exmples

4.1 Distinct Eigenvalues:  ≠ 

(1) Hyperexponential Distribution:   

Consider a MAP(2) with the following set of moments 
     = (5/21, 17/294, 39/2744, 67/1176) for which 
we have (   ) = (28, 11, 13/3, 19), ( ) = (1/4, 
1/7), and ( ) = (1/12, 2/3). Since ( ) = (8/9, 1/9), the 
marginal distribution is hyper-exponential which can be generated 
as follows

∼ 
 

by Eq. (3.3). Since (   ) = (22/27, 2/27, 2/27, 
1/27), the next interval Y can be generated conditional to the dis-
tribution of X, i.e.

 ∼ ∼ 
 

or

 ∼ ∼ 
 

by Eqs. (3.4) and (3.5). The next interval is generated conditional 
to the distribution of Y.

(2) MGE(2):   

Consider a MAP(2) with the following set of moments 
     = (3/5, 1/3, 8/45, 16/45) for which we have 
(   ) = (6, 5, 7/5, 9/5), ( ) = (1/2, 1/3), and 
( ) = (-1/2, 4/3). Since ( ) = (8/5, -3/5), the marginal 
distribution is MGE(2) which can be generated as follows

∼ 
 

by Eq. (3.6). Since    = (9/20, 1/4, 1/4, 
3/10), the next interval Y can be generated conditional to the dis-
tribution of X, i.e.

 ∼ ∼ 
 

or

 ∼ ∼ 
 

by Eqs. (3.7) and (3.8). The next interval is generated conditional 
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to the distribution of Y.

4.2 Identical Eigenvalues:   

Consider a MAP(2) with the following set of moments 
     = (3/7, 11/63, 13/189, 103/567) for which we 
have (   ) = (9, 6, 15/7, 31/7), ( ) = (1/3, 1/3), 
and ( ) = (-1/2, 4/3). We have ( ) = (19/27, 2/27) and 
the marginal distribution is MGE(2) which can be generated as 
follows

∼ 
 

by Eq. (3.9). Since (   ) = (31/63, 14/63, 
14/63, 4/63), the next interval Y can be generated conditional to 
the distribution of X, i.e.

 ∼ ∼ 
 

or

 ∼ ∼ 
 

by Eqs. (3.10) and (3.11). The next interval is generated condi-
tional to the distribution of Y.

5. Conclusions

The one-to-one correspondence between the minimal set of mo-
ments and the minimal LT representation enables us to find a joint 
distribution function of the stationary intervals of a MAP() by 
linear transformation from moments to minimal LT and then by 
inversion of the LT. By simple algebraic manipulation of the in-
verse LT a joint distribution can be obtained by which a MAP can 
be generated without transition rate matrices. The presented ana-
lytic procedure is only for MAP(2)s of which canonical form is 
known for transformation from moments to the Markovian 
representation. However, no canonical transformation is available 
for MAPs of order 3 or higher for which a generalization of our 
approach can be useful in modeling and simulating a queueing 

system with a MAP. Unlike the MAP(2) whose eigenvalues are 
always real valued, higher order MAPs may have complex 
-valued eigenvalues in which case the MAP can be represented as 
a repetition of a real-valued MAP. A natural direction of future re-
search is the study of MAPs with cyclic Markov chain and trig-
onometric distribution function due to complex eigenvalues. 
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