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Generation of the Markovian Arrival Process of Order 2 Based on
Joint Distribution

Sunkyo Kim
School of Business, Ajou University

In queueing network analysis, the Markovian arrival process, MAP, can be used as approximating arrival or
departure processes. While the renewal processes such as Poisson process can be generated based on the
marginal moments, the Markovian arrival process requires lag-1 joint moment or joint distribution function. In
fact, the Markovian arrival process can be simulated by two transition rate matrices, (Do, D), which is called the
Markovian representation. However, finding a Markovian representation of higher order involves a numerically
iterative procedure due to redundancy in the Markovian representation. Since there is one-to-one correspondence
between joint moments and the coefficients of the joint Laplace transform, generating a MAP based on joint
distribution can be much less complicated. In this paper, we propose an approach to generate a MAP based on
joint distribution function which can be quickly obtained from joint moments and joint Laplace transform.
Closed form formula and streamlined procedures are given for the simulation of MAP of order 2.

Keywords: Markovian Arrival Process, Moment Matching, Laplace Transform, Lag-1 Joint Distribution Of

Intervals

1. Introduction

The Markovian arrival process, MAP, can be generated by two
transition rate matrices (Do, D) which is called the Markovian
representation. However, finding a Markovian representation of
higher order MAP by moment matching is quite complicated due
to redundancy of transition rate matrices (Do, D). On the other
hand, however, the moment matching is straightforward for the
Laplace transform (LT) of which minimal representation is
known; see Kim (2016) for details. It is well known that the mini-
mal number of parameters for a MAP(n) is n%; see Bodrog et al.
(2008), Casale et al. (2010) and Telek et al. (2007) for details.
Since the minimal LT representation is available for the MAP of

any order, the parameters of the LT can be obtained in closed
form by moment matching whereas closed - form transformation
is not available from moments to the Markovian representation
(Do, D) except for the MAP of order 2, MAP(2); see Bodrog et
al. (2008), Kim (2017), Ramirez-Cobo et al. (2010, 2012) for
details.

As for generating or simulating a MAP is concerned, the lag-1
joint distribution can be used instead of the Markovian representa-
tion (Do, D1). A minimal joint LT can be easily converted into a
joint distribution by LT inversion. If the inverse LT is not in ex-
plicit form of known distribution function, a simple algebraic ma-
nipulation can be used to determine exact distribution which is
needed for generating a MAP. We are interested in the problem of
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obtaining a simulation - ready joint distribution from the set of
minimal moments and minimal joint LT. We focus only on
MAP(2) in this paper even though our approach can be general-
ized to MAP of higher order.

The paper is organized as follows. In Section 2, we review
known results on the representation of MAP(2)s. Then, we pres-
ent main result on the joint distribution of stationary intervals of a
MAP(2) by inversion of joint LT in Section 3 followed by the nu-
merical examples given in Section 4. We conclude in Section 5
with discussions on future direction of research.

2. Preliminaries

2.1 Markovian representation (D, D)

A MAP(2) is fully described by the two transition rate matrices
(Do, D) given in terms of six rate parameters (A}, g Agps Ago

Ty, Ty, 1.6

o -\ —oy 0y o A A
D, = oy Ao’ D: = Agr Ap

where (A, Ay) = (A T A0 gy +Ayy). Each off - diagonal
rate parameter of Dy represents the transition rate out of a given
phase into another phase but without invoking an arrival whereas
each rate parameter of D represents the transition rate invoking
an arrival with or without changing phase. Let Q = Dy + Dy and P
= (—D,) " 'D. Then, Q is an infinitesimal generator for the con-
tinuous time Markov chain whereas P is the transition probability
matrix for the embedded discrete time Markov chain. Let p be the
stationary probability vector for P, i.e. pP = p and pe = 1 where e
is a vector of ones.

2.2 Moments and the Laplace transform

Let T; be the i-th stationary interval of a MAP. Then, the mar-
ginal moments and the lag-1 joint moments are obtained as fol-
lows

E(TY) = klp(=Dy) ",
E(T{T}) = Kilp(—D,) "P(~D,) ‘e

respectively. In order to simplify the notation, we use reduced
moments defined as

= E(T]) /K,
e =BT Ty)/ (K1),

A MAP(2) can be completely described by three marginal mo-
ments (7, ry, 73) and one joint moment r;. In fact, a MAP(n) is
completely described by (2n—1) marginal moments and
(n—1)? lag-1 joint moments; see Casale et al. (2010) and Telek
et al. (2007) for a minimal set of moments for MAP(n)s.

It was shown in Kim (2016) that the lag-1 joint Laplace transform
(LT) of stationary intervals of MAP(n)s can be written in terms of
n? parameters. Especially for MAP(2)s, the marginal and lag-1 joint
LTs can be written in terms of (ay, a,, b, ¢;;) as follows

- b,s+a,

=p(sI-D,) 'Dje = ———— 2.1
f(s) =p(sI—=Dy) 'Dye P rasta 2.1)
f(s,t) =p(sI—D,)"'D,(t1—D,) 'Dye 2.2)

cps+agh, (s+1) JrafJ
(52+a18+a0)(t2+a1t+a0)

where (ay, a;. by, ¢;;) = (I—=D,l, Trace(D,), pD,e, pDie ). A
MAP(2) can be completely described by Eq. (2.2) which is given
in terms of four coefficients (ay, a;, by, ).

2.3 Jordan Representation

Another minimal representation used in our study is the Jordan
representation given in two matrices (E, R); see Telek et al.
(2007) and Kim (2020) for details. A MAP(n) can be represented
by two n X nmatrices (E, R) given in terms of n® parameters.
The diagonal entries of the matrix E are eigenvalues of (—D,)™".
The matrix R accounts for lag-1 correlation and satisfies Re = e¢;
see Telek et al. (2007) for details.

For a MAP(2), let (v, v,) be the eigenvalues of (—D,)~* with
v, = v,. For the case of distinct eigenvalues, (E, R) can be writ-

ten in terms of (v}, vy, v5, 1), 1.€.

E— vy 0 _ 1-vy 1y
0 v|’ v, 1—uy,
If v; = v,, the E is written as
v, 0
E= .
0 7/1}

The marginal moments and the lag-1 joint moments are ob-
tained as

(ry, myy 735 71,)= (UE@,UEZG,UE:ie,UEREE,)

where v=(v,/(vy+v,), v,/ (v3+v,)). Again, by matching

moments (v, vy, V5, v,) can be determined by (v, 7y, 75, 7).
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3. Joint Distribution and Lag-1 Conditional Distribution

In this section, we propose a new approach in generating a MAP
without (Do, D). We present closed - form formula for trans-
formation of the joint LT to explicit joint distribution by which
stationary intervals are generated.

Since moments can be obtained from the marginal and joint
LTs in (2.1) and (2.2), the LT coefficients of the (ay, a;, by, ¢;y)

can be uniquely determined from moments as follows

rf —Try T TyTTy
(a&,al) = 2 I 9
Ty 1Ty TH T3

3
2r 1Mo ™11 — T3 2 9 9
1 2 » C1 a, Apay Ty T ATy
Tog ™1 T3

of which details can be found in Kim (2016, 2017).

For the inversion of the marginal and joint LTs, we consider the
case of distinct eigenvalues and the case of identical eigenvalues
separately. First, Let X and ¥ be the random variables represent-
ing two consecutive stationary intervals of a MAP(2).

3.1 Distinct eigenvalues

If (—D,)" ! has distinct eigenvalues, then (—1/v,,—1/v,) can
be determined as roots of the characteristic polynomial equation
given as s” +a,s+a, = 0. Assuming, WLOG, that v, > v,, we

have
(v V):(al-i-\/af—llao al—\/af—llaoj
12 2ay ’ 2ay ’
and
( ) rl(ul-i-uQ)—rH—VluQ Tl(V1+V2)_TH_V1V2
VUayUy) =
v (7"1_”2)(”1_V2) (T1_V1)(V2_V1)

by moment matching based on Eq. (2.3). Again, by moment
matching, the following equations can be obtained to write the
marginal and joint LTs in (2.1) and (2.2) in terms of

(Vp Vg, Vs, V4)

1 vt Vs T 150,

(aoa Ay, bl) =

) ) )
vy, vy (v )

V?l/-d(l —v,) +1/§1/4(1 —v3) 20008y,

V?Vg(l’:ﬁ'l’zx)

Cn =

By inversion of the LT in (2.1) and (2.2) given in terms of
(v vy vy vy), We get the following marginal and lag-1 joint

density functions

_ ﬂe*l'/”l + 1_¢1 672/’/2
Yy Yy

f(z) (.1)

VR
f(%y) _ 121 e (x+y)/n + 1.2 e /vy —y/v, (32)
Vy gLe
+ ¢2>1 V]efx/llry/vl + ¢2é2 ef(mﬂ/)/v?
1/2 y2

where
(6, 6,) = vy Vg _ 1/4(1—1/3)
172 va v, vty ) T vyt u,
b= = Valy b0 = 1/3(1*1/4)
12 21 vyt 22 7

Note that (¢, ¢,) = (&), + 155 B9y +yy). Depending on the
sign of v, the marginal distribution of a stationary interval is ei-
ther hyper-exponential or mixed generalized Erlang (MGE). In or-
der to simplify the notation, let u,(x) and wu,(x) be the ex-
ponential density function each with mean v, and v, respectively,
Le.

uy(x) = %e’f”/”w’ uy(x) = Vigei't/”?

Also, let w,,(x) be the density function of the hypo-ex-
ponential distribution that is a sum of two independent ex-
ponential random variables each with mean v, and v,, i.e.

—z/v —x/1p
(&

unle) = VTV Tl

Below, we denote this hypo-exponential distribution by

Hypoexp (1/vy, 1/ vs,).

(1) Hyper-exponential distribution: v,> 0

If v;> 0, then we have ¢, > 0, ¢, > 0. Since ¢; + ¢, =1, the
marginal distribution of a stationary interval in (3.1) can be re-
written as

f@) =¢yu, () + gyuy(z)
and therefore X is a hyper-exponential, i.e.

 [Exp(1/m,)
Exp(l/u2)

w.p- ¢y
W.p- by

The joint density function (3.2) can be written as

flay) = ¢1,1u1($)u1(y) +¢1,2U1(5’3)U2(y)

+ o quy (x)ul (y) + g ouy (x)u2 (y)-
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By the definition of conditional probability, the conditional
density function is given as

Uy (Z/)

Flyla) = 451,1“1(37; +¢’2,1“2(95)

o,y (z)+ T (z)
( P1,9U
buy

z) +¢2,2u2 (33)
1’)+¢2u2(1')

(

( uy (y)

by which the conditional distribution of Y given X is again hy-
per-exponential. That is, If X ~Exp(1/v,), then the conditional dis-
tribution of Y is

Exp(1/v;)
Exp(1/v,)

W.p- ¢1A1/¢1

W.p- ¢172/¢1 (34

(WX~MNUWD~{

Otherwise, if X ~ Exp(1/,), then the conditional distribution of
Y is

W.P- Py, 1/ o
W-p- 452.,2/ ¢y

EXp(l/Vl)

Exp(1/1,) (35)

(YVIX~ EXp(l/l/Q)) ~ {

(2) MGE(2): v, <0

If v, <0, then we have ¢, >0, ¢, <0 and the marginal dis-
tribution in (3.1) is not hyper-exponential. By a simple manipu-
lation, however, it can be shown that the marginal distribution is a
mixed generalized Erlang, i.e.

f(l’) = ¢1u1 (33) + ¢12U12 (33)

where

o
WMM@+%%@ %%)

_ ( VVs T 150, (VQ _VI)VZ} )

UZ(V3+U4) ’ 1/2(u3+u4) ’

That is,
Exp(1/v) W.p-1,
X {HypereXP(l/Vpl/Vz) W.p- gy 9

The joint density function is written as

flay) = Py 1 (1)“1 (y) LIREO (x)uu(y)
+¢12,1u12(m)u1 (y) F919,10U10 (x)uu (y)

where
vy V?
1/’1,1 = ¢1,1 + (¢1,2 +¢2,1) 5 + ¢2,277
vy vy

Vo™
Py = ( 2 )(Vﬂsm +V1¢2A2)7
2
Vo™
¢12,1 _( 2 )(V2¢2A1 +V1¢2A2)7
2
2
(1 — 1)
%2,12 = 5 ¢2,2'
Vs

By the definition of conditional probability, the conditional
density function is given as

Py U (z) +'¢12,1U12(!L')
¢1“1($) +¢12“12($)

flylz) =

)U’l (y)

n ( Py 19U (z) +1Z’12,12u12 ()

Py, () F1hiougy (2) )u12 (y)

by which the conditional distribution of ¥ given X is either ex-
ponential or hypo-exponential. That is, if X ~ Exp(1/v,), then the
conditional distribution of Y is

Exp(l/l/l) W.p- 71’1,1/’/’1

(VX ~ EXI)(I/I/1 ) ~ {Hyperexp(l/l/l,l/l/z) W'p'wl.IZ/wl

(3.7
or if X ~ Hypoexp(1/v, , 1/v,), then the conditional distribution
of Yis

(Y I X~ Hyperexp(l/vl,l/llr_;))
B {Exp(l/lll) W.p- 1/’12.1/1/’1
Hyperexp(l/Vpl/Vz) W<P<1/112_12/1/’1

(3.8)

3.2 Identical Eigenvalues

If (—D,)” " has identical eigenvalues, i.e. v; = v, then we have

a} =4a, in Eq. (2.1) and we have v, =a,/2 and

7“11—7"2(1—r1+u1) T — Ty
(V37V4): 5 ) —
(7'171/1) T
along with
1 2 1 Yy
Ay, a 7b =5y sy 1_7 9
(apay;b;) (V% v, 1/1( vy (vy +v,) )

_i(_@m—mw

=
1 1/% V?(V3+V4)

Let u,, (z) be the density function of the Erlang(2, 1/v,) dis-
tribution that is a sum of two independent and identical ex-
ponential random variables with mean v, i.e.
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—x/n
(&

"

“11(5) =

Then, by inverse LT, the marginal LT in Eq. (2.1) is converted
into the following marginal density function

f(x) = wlul (m) +w11u11 (m)
where (¢, ¥,,) =(1—,/vy, &,/v,). Thatis,

w.p. 1y

Exp(1/1,)
X~ { w.p-Yy

Erlang(&l/yl) (3:9)

The joint LT given in Eq. (2.2), by inverse LT, is converted in-
to the following joint density function.

fla,y) = Py (2)u, (y) Uy (2)uy, (y)
RETRGH (I)% (y) Y nun (5”)“11 (y)

where

ViV,

v

1/11,1 = <Z51,1 + (¢1A2 + ¢2,1)

Vy— U
ngl)(l’2¢1,2+l’1¢2,2)7

"
+¢2‘27vw1,11 =
2

Vy— U

2V21)(V2¢2,1 +V1¢52,2)7
2

(V1_V2)2

v

1/111.,1 =

Y = B

By the definition of conditional probability, the conditional
density function is given as

wl,lul () +¢11,1u11 (x)
hyuy (JU) +ug (ac)

+( Yy (@) + ey guy (2)
Py (z)+ Pyugy (1’)

flylz) = ( )ul(y)

)uu(y)

by which the conditional distribution of ¥ given X is either ex-
ponential or Erlang. That is,

EXP(l/V1) W‘p'¢1,1/¢1
(YIX~ EXP(l/Vl)) ~ {Erlang(Z,l/V]) W~p-¢1,11/w1
(3.10)

or if X ~ Erlang(2,1/v,), then the conditional distribution of Y is

Exp(1/v,) w.p- 1/

(Y1X ~ Eralng(2,1/1,)) N{Erlang(Zl/yl) w.p- ¥, 11/,

(3.11)

4. Numerical Exmples

4.1 Distinct Eigenvalues: v, = v,

(1) Hyperexponential Distribution: v4 > 0

Consider a MAP(2) with the following set of moments
(ry, 79, 73, 7yy) = (5721, 17/294, 39/2744, 67/1176) for which
we have (ay, a;, by, ¢p) = (28, 11, 13/3, 19), (v, vy) = (1/4,
1/7), and (v, v,) = (1/12, 2/3). Since (¢;, ¢5) = (8/9, 1/9), the
marginal distribution is hyper-exponential which can be generated
as follows

W.p.8/9

Exp(4)
XW{ ; W.p.1/9

Exp(7)
by Eq. (3.3). Since (¢, Pror Pors ban) = (22127, 2/27, 2/27,
1/27), the next interval ¥ can be generated conditional to the dis-
tribution of X, i.e.

(YIX~ Exp(4)) ~ {gig%% ggll/ll/Q12
or
(Y1X~ Exp(7)) ~ {Eﬁﬁﬁiﬁ Xﬁﬁﬁf//:f

by Egs. (3.4) and (3.5). The next interval is generated conditional
to the distribution of Y.

(2)MGE(2): v; <0

Consider a MAP(2) with the following set of moments
(ry, 79y 75, 7yy) = (315, 173, 8/45, 16/45) for which we have
(ags ay, bys ¢p7) = (6, 5, 7/5, 915), (vy, vy) = (1/2, 1/3), and
(vgy vy) = (172, 4/3). Since (¢,, ¢,) = (8/5, -3/5), the marginal
distribution is MGE(2) which can be generated as follows

Exp(2)
Hyperexp(2,3)

w.p-7/10

XN{ w.p.3/10

by Eq. (3.6). Since (11, ¥y195 ¥1a15 Y19.10)= (9120, 1/4, 1/4,
3/10), the next interval ¥ can be generated conditional to the dis-
tribution of X, i.e.

Exp(2)
Hyperexp(2,3)

(Y1X~ Exp(2)) ~ { iﬁﬁi?ﬁi
or

Exp(2) w.p.5/6

(Y1X ~ Hyperexp(2.3)) ~ {Hyperexp(?,?)) w.p-1/6

by Egs. (3.7) and (3.8). The next interval is generated conditional
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to the distribution of Y.

4.2 Identical Eigenvalues: v, = v,

Consider a MAP(2) with the following set of moments
(ry, 1y, 75, 7yy) = (3/7, 11/63, 13/189, 103/567) for which we
have (ay, a;, by, ¢5) = (9, 6, 15/7, 31/7), (vy, vy) = (1/3, 1/3),
and (vy, v,) = (-1/2, 4/3). We have (¢, ¢,) = (19/27, 2/27) and
the marginal distribution is MGE(2) which can be generated as
follows

w.p.-5/7

A~ {EXP(3) w.p-2/7

Erlang(2,3)

by Eq. (3.9). Since (vy,1, Y110 Y1915 Y1010) = (31/63, 14/63,
14/63, 4/63), the next interval ¥ can be generated conditional to
the distribution of X, i.e.

Exp(3) w.p-31/45
(YIX~Exp(3)) ~ {Eﬂzng(zg) W.E. 14/45

or
Exp(3) w.p.7/9

(Y1x ~ Erlang(2,3)) - {Erlang(2,3) W.p.2/9
by Egs. (3.10) and (3.11). The next interval is generated condi-
tional to the distribution of Y.

5. Conclusions

The one-to-one correspondence between the minimal set of mo-
ments and the minimal LT representation enables us to find a joint
distribution function of the stationary intervals of a MAP(n) by
linear transformation from moments to minimal LT and then by
inversion of the LT. By simple algebraic manipulation of the in-
verse LT a joint distribution can be obtained by which a MAP can
be generated without transition rate matrices. The presented ana-
lytic procedure is only for MAP(2)s of which canonical form is
known for transformation from moments to the Markovian
representation. However, no canonical transformation is available
for MAPs of order 3 or higher for which a generalization of our
approach can be useful in modeling and simulating a queueing

system with a MAP. Unlike the MAP(2) whose eigenvalues are
always real valued, higher order MAPs may have complex
-valued eigenvalues in which case the MAP can be represented as
a repetition of a real-valued MAP. A natural direction of future re-
search is the study of MAPs with cyclic Markov chain and trig-
onometric distribution function due to complex eigenvalues.
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