
Journal of the Korean Institute of Industrial Engineers https://doi.org/10.7232/JKIIE.2024.50.3.157
Vol. 50, No. 3, pp. 157-172, June 2024. © 2024 KIIE
ISSN 1225-0988 | EISSN 2234-6457

Capacity Scalability Planning Algorithms for Job-shop-type
Reconfigurable Manufacturing Systems with Dynamic Demands

Xuebin Li․Hyeon-Il Kim․Dong-Ho Lee†

Department of Industrial Engineering, Hanyang University

개별 공정 형태의 재구성형 제조시스템에 대한
동적 생산용량 결정 알고리즘

리학빈․김현일․이동호

한양대학교 산업공학과

This study addresses dynamic capacity scalability planning for job-shop-type reconfigurable manufacturing systems
(RMSs). The problem is to determine the system components that satisfies the part demands and the minimum workstation
utilization in each period of a planning horizon. For the basic case of non-decreasing demands, the previous model is
extended by considering a limited number of pallets. After formulating the problem that minimizes the sum of component
acquisition and configuration change costs as a nonlinear integer programming model with closed queueing network
estimations of part throughputs and workstation utilizations, two backward heuristics are proposed that determine the
system components from the last to the first period. Computational results show that they outperform the previous ones
significantly. In addition, for the general case of fluctuating demands, two variable neighborhood search (VNS) algorithms
are proposed that minimize the sum of component acquisition/removal and configuration change costs, and computational
results are reported.

†
Keywords: Reconfigurable Manufacturing Systems, Capacity Scalability, Dynamic Demands, Backward Heuristics,

Variable Neighborhood Search Algorithms

1. Introduction

Reconfigurable manufacturing is an advanced manufacturing para-
digm that changes hardware and software components in order to ad-
just production capacity and functionality exactly in response to mar-
ket or system changes (Koren et al., 1999). Compared with tradi-
tional flexible manufacturing systems (FMSs) with a limited suc-
cess, reconfigurable manufacturing systems (RMSs) have an in-
trinsic capability to change system configurations by adding or re-
moving machine tools and other components quickly. In fact, the pri-
mary goal of RMS is to establish the exact productivity and flexibility

by taking advantages of both dedicated and flexible manufacturing.
For more details on the RMS concept and recent literatures, refer to
Bortolini et al. (2018), Koren et al. (2018), Magnaha et al. (2019),
Yelles-Chaouche et al. (2021), Lee and Ryu (2021), Napoleone et al.
(2023) and Pansare et al. (2023).

A key feature of RMS is the reconfigurability that can add, remove
and rearrange system components to provide the required capacity
and functionality in timely and cost-effective manner. In general, the
reconfigurability can be achieved by the core characteristics of mod-
ularity, integrability, scalability, convertibility, diagnosability and
customization, which can reduce time and cost of reconfigurations as

This work was supported by the Ministry of Science and ICT grant funded by Korea government. (Number: 2022-0-00131)
†Corresponding author: Dong-Ho Lee, Department of Industrial Engineering, Hanyang University, Wangsimni-ro 222, Seongdong-gu, Seoul 04763,

Republic of Korea, Tel: +82-2-2220-0475, E-mail: leman@hanyang.ac.kr
Received December 11, 2023; Accepted February 23, 2024.

https://crossmark.crossref.org/dialog/?doi=10.7232/JKIIE.2024.50.3.157&domain=https://jkiie.org/&uri_scheme=http:&cm_version=v1.5

158 Xuebin Li․Hyeon-Il Kim․Dong-Ho Lee

well as increase system responsiveness. Refer to Napoleone et al.
(2018) for the details on the core characteristics and their relation-
ships over the manufacturing system life cycle, and Koren et al.
(2018) for RMS design principles based on the core characteristics.

As in conventional manufacturing systems, the RMS decision
problems can be classified into design, operation and control.
Among them, the design problem is much different from those for
conventional manufacturing systems due to the reconfigurability
(Andersen et al., 2017). Specifically,the RMS design can be classi-
fied into component- and system-level decisions. The compo-
nent-level decisions include designs of reconfigurable machine
tools, jigs/fixtures and material handling devices (Gadalla and Xue,
2016; Yang et al., 2021), while the system-level decisions include re-
configurability level assessment, layout and configuration/recon-
figuration selection(Koren and Shpitalni, 2010; Koren et al., 2018).

Among the RMS design problems, this study addresses sys-
tem-level configuration/reconfiguration selection that determines
production capacity to satisfy dynamic demands by adding or remov-
ing system components. Unlike the long-term capacity planning in
conventional manufacturing systems, the RMS configuration/recon-
figuration selection has features of both long-term design and
short-term operation due to the inherent reconfigurability (Yu et al.,
2014).

Most previous studies on system-level configuration/reconfigura-
tion selection are done on the flow-shop-type with parallel machines
at each stage. As an early study, Son (2000) considers a single-period
static problem that determines the numbers of stages and parallel ma-
chines at each stage as well as the operation assigned to each stage
for single part flow lines, and proposes an integer programming mod-
el that minimizes the total capital cost. Then, the static model is ex-
tended to a multi-period dynamic one that determines the system
configuration in each period using the similarity between two con-
secutive configurations. See Spicer and Carlo (2007) for other mul-
ti-period model in single part flow lines. Also, Wang and Koren
(2012) consider a static problem with a fixed number of stages, and
propose a genetic algorithm that minimizes the total number of ma-
chines while maximizing the system throughput. Later, Koren et al.
(2017) extend it by considering buffers between stages. Due to the
limitation of a single operation assigned to each stage, the above
models are extended to the ones that allow multiple operations at
each stage. See Dou et al. (2009), Moghaddam et al. (2018), Zhang
et al. (2023), Albus and Huber (2023) and Albus et al. (2024) for
examples.

Due to the limited applications, the above studies are extended to
multi-part flow lines. As an early study, Youssef and EIMaraghy
(2006) extend the Son’s static model and propose a genetic algorithm
after an integer programming model is developed. Also, Dou et al.

(2010) and Moghaddam et al. (2018) extend their previous dynamic
models for multi-part flow lines. In particular, Moghaddam et al.
(2020) show the outperformance of the multi-period dynamic ap-
proach over the single-period static approach. Besides these, some
studies propose multi-criterion optimization approaches that eval-
uate alternative configurations and select the best one after weighting
different criteria. See Goyal et al. (2012), Ashraf and Hasan (2018)
and Kumar et al. (2022) for examples.

Unlike the above ones, this study considers system-level config-
uration/reconfiguration selection for job-shop-type RMSs with
non-unidirectional flows, which is the problem of determining the
system components required to satisfy dynamic demands in each pe-
riod of a planning horizon, called capacity scalability planning in the
literature. In fact, this study is an extension of Yu et al. (2014) that
consider the restricted problem with non-decreasing demands.
Specifically, two cases of the problem, i.e. basic case with non-de-
creasing demands and general case with fluctuating demands, are
considered.

For the basic case, the previous model is modified to a more prac-
tical one with a limited number of pallets. For the objective of mini-
mizing the sum of component acquisition and configuration change
costs, a nonlinear integer programming model is proposed that in-
cludes closed queuing network based performance estimation. Then,
two backward heuristics are proposed that determine the system con-
figurations from the last to the first period. Computational experi-
ments were done, and the results are reported. In addition, for the gen-
eral case with fluctuating demands, the basic nonlinear integer pro-
gramming model is extended for the objective of minimizing compo-
nent acquisition/removal and configuration change costs. Then, two
variable neighborhood search algorithms, ordinary and hybrid ones,
are proposed, where the hybrid algorithm allows non-improving
moves using the simulated annealing technique. To test the perform-
ance of the algorithms, computational experiments were done and
the results are reported.

2. Basic case

This section describes the basic case with non-decreasing demands.
After formulating the problem as a nonlinear integer programming
model, solution algorithms and computational results are presented.

2.1 Problem description

The system considered in this study is a job-shop-type RMS that
consists of computer numerical control machines, loading/unload-
ing (L/U) stations, material transporters and a central buffer. Note

Capacity Scalability Planning Algorithms for Job-shop-type Reconfigurable Manufacturing Systems with Dynamic Demands 159

that the RMS is fundamentally different from the conventional FMSs
in that it has the capability to change system components quickly.
Figure 1 shows an RMS with three machines and two L/U stations.
A system-level reconfiguration from two to three machines is also il-
lustrated in this figure.

Figure 1. Reconfigurable Manufacturing System with
System-level Reconfiguration: Example

In the RMS, each part is processed through one or more machines
in non-unidirectional flows after loaded on a pallet at an L/U station
and then released into the central buffer. Similarly, a completed part
is unloaded from the pallet at an L/U station and then exits from the
RMS. The central buffer, which is an automatic storage/retrieval sys-
tem with a limited number of storage locations, is used to store the
pallets. Each machine can process parts using the required cutting
tools stored in its tool magazine with a sufficient tool slot capacity.
Parts are produced by one or more operations with precedence rela-
tions, each of which can be processed on one of the machines at the
pre-specified processing workstation. Finally, one or more auto-
mated transporters are used to move pallets among the system com-
ponents, i.e. L/U station, processing workstations and central buffer.

For given non-decreasing demands of multiple product types over
a planning horizon, the basic case is to determine the number of addi-
tional components, i.e. machines, transporters, L/U stations and pal-
lets, to satisfy the demands in each period of the planning horizon for
the objective of minimizing the sum of component acquisition and
configuration change costs. The component acquisition costs are
those required to acquire components, and the configuration change
costs are those required to install newly acquired components. Due
to non-decreasing demands, the system components added in a peri-
od are maintained during the remaining periods. Without loss of gen-
erality, it is assumed that there are no system components at the be-
ginning of the planning horizon. Besides the demand requirements,
other constraints are the limited number of pallets and the minimum
allowable station utilization. The number of pallets is limited due to
the central buffer capacity, which a practical extension of Yu et al.
(2014). Also, the minimum allowable utilization constraint implies
that utilizations of processing workstations and L/U stations must not

be less than a lower limit, which is needed to avoid over-installations
of unnecessary components.

This study considers a deterministic version of the problem, i.e. all
data such as process plans, demands and cost values are deterministic
and given in advance. Among the data, the process plans, which con-
tain the information on operations, processing workstations and
processing/transportation times, is needed to estimate throughputs
and station utilizations under a system configuration.

The problem can be formulated as a nonlinear integer program-
ming model, which modifies Yu et al. (2014)’s by adding the limited
number of pallets. The notations used are summarized below.

Indices
 part type,     … 

 periods,     … 

 stations,     …  (  … : process-
ing workstations; : L/U station; and : trans-
portation station)

Parameters
 acquisition cost of a component at station  in period 
 configuration change cost of station  in period 
 acquisition cost of a pallet
 demand of part type  in period 
 minimum allowable station utilization
 maximum number of pallets
 large number

Decision variables
 number of newly acquired components at station  in

period 
 = 1 if there is a configuration change at station  in peri-

od , and 0 otherwise
: number of newly acquired pallets in period 

Now, the nonlinear integer programming model is given below. In
the model,    and   denote the throughput
of part type  and the utilization of station  under configuration
  in period , where     …  and
 ∑  

 . Note that  ∑  
  and  denote the num-

bers of components at station  and pallets in period , respectively.

[P-NID] Minimize
∑  

 ∑  
 ⋅ ⋅ ⋅

subject to
    ≥  for all  and  (1)

160 Xuebin Li․Hyeon-Il Kim․Dong-Ho Lee

  ≥  for all   ⋯  and  (2)
 ≤ ⋅ for all  and  (3)
 ∑  

  ≤  for all  (4)
     for all  (5)
 ∈  for all  and  (6)
∈  for all  and  (7)

The objective function denotes the sum of component acquisition
and configuration change costs over the planning horizon.
Constraints (1) and (2) represent the demand and the minimum al-
lowable station utilization requirements, respectively. In this study,
part throughputs and station utilizations are estimated using the
closed queuing network model of Yu et al. (2014), originally pro-
posed by Solberg (1977) for performance evaluation of FMSs. The
detailed estimation methods will be explained in the next section.
Constraint (3) ensures that a component acquisition occurs in a peri-
od if there is a configuration change in that period. Constraints (4)
and (5) represent the limited number of pallets and there are no sys-
tem components at the beginning of the planning horizon,
respectively. Finally, the remaining constraints represent the con-
ditions of decision variables.

It can be easily seen that the problem [P-NID] is difficult to solve
optimally for large-sized instances due to the exponential number of
possible configurations and the nonlinear closed queuing network
based estimation functions   and   .
Therefore, instead of the optimal approach with very limited prac-
tical applications, the heuristic approach is adopted in this study.

2.2 Solution algorithms

This section presents the heuristic algorithms proposed in this
study. Before explaining the heuristics, the closed queuing network
(CQN) model is briefly explained.

(1) Estimating throughputs and utilizations
The CQN model represents an RMS configuration    as 

inter-connected stations with one or more identical components.
<Figure 2> shows the CQN model with processing stations
(  … ), an L/U station () and a transportation sta-
tion (), where the transportation station takes over the role of a cen-
tral server activated after each individual processing operation is fin-
ished on a machine at a processing station. The assumptions are: (a)
exponential processing/transportation times; (b) new parts available
at all times; (c) first come first served queueing discipline; (d) univer-
sal pallets that can load all part types being processed in the RMS; and
(e) sufficient central buffer capacity. See Solberg (1977) for more de-
tails on the CQN topology.

Figure 2. Closed Queuing Network (CQN) Model for an RMS
Configuration

For a given RMS configuration   , let  be the number
of pallets located at station  in period  and hence  ∑  

  .
Also, let  be the average workload at station  in period , which
can be calculated using the process plans. Then, the probability that
the RMS is in state    …  can be represented as

    …   


∏  

  ,

where   

 if  ≤  and



⋅
   otherwise. Note that   is the nor-

malization constants over the state space, which can be calculated by
the Buzen algorithm. See Tempelmeier and Kuhn (1993) for more
details on the Buzen algorithm.

Then, the throughput of part type  can be estimated as

    ⋅

 
,

where  and  denote the production ratio of part type  and the
average number of operations per part, respectively. Also, the uti-
lization of station  can be estimated as

   ⋅

⋅ 
,

where  and  denote the average processing time per operation
and the relative arrival frequency (visit ratio) of a part at station,
respectively. See Tempelmeier and Kuhn (1993) for more details on
the derivations of the above two formulas.

(2) Heuristic algorithms
Modified backward-utilization (MB-UT) heuristic
The MB-UT heuristic is a modification of Yu et al. (2014)’s that

determines the configurations from the last to the first period. Unlike
the previous one that determines the last period configuration using
a simple greedy heuristic, MB-UT uses a local search method. The

Capacity Scalability Planning Algorithms for Job-shop-type Reconfigurable Manufacturing Systems with Dynamic Demands 161

detailed procedure is given below. In the procedure,  represents
a vector with 1 in the  th place and other elements are 0.

Procedure 1. (MB-UT heuristic)
Step 1. Determine the last period configuration as follows.

(a) Initialize    …  and    .
(b) Select station ′ such that
 ′    …  

 and increase the number of components at station ′
 by 1. Do this until a feasible configuration is obtained.

(c) Decrease  to the minimum possible one.
Step 2. Determine the configurations of the preceding periods as

follows.
(a) Set    .

 (b) Initialize    and set the number of pallets in
period  to 0.

 (c) For the configuration  , if a feasible configuration
can be obtained by increasing the number of pallets be-
fore reaching  , i.e. number of pallets in the di-
rectly succeeding period, set the configuration in peri-
od  as   and go to (e). Otherwise, go to (d).

 (d) Select a station  such that
      

and set 




 




 and go to (c).

 (e) If  < 2, stop. Otherwise, set    and go to (b).

Modified backward-throughput (MB-TH) heuristic
The MB-TH heuristic is the same as the MB-UT except for Step

1(b) of procedure 1, i.e. priority rule that selects the station for which
the number of components is increased when determining the last pe-
riod configuration. Specifically, the MB-TH heuristic selects the sta-
tion with the maximum increase in throughput divided by the sum of
unit component acquisition and configuration change costs, i.e. se-
lect station ′ such that

′    … 

 
   

.

2.3 Computational Results

To test the performance of the heuristics proposed in this study,
computational experiments were done and the results are reported
in this section. Specifically, the two heuristics, MB-UT and
MB-TH, are compared with the forward-throughput (F-TH), for-
ward-utilization (F-UT) and backward-utilization (B-UT) heuristics
of Yu et al. (2014) after setting the limited number of pallets. The

heuristics were coded in Python 3.1 and the experiments were done
on a PC with an Intel core i9 processor at 3.42 GHz clock speed with
64GB RAM memory.

The first experiment was done to show the absolute performance
for small sized test instances. For the test, 30 instances with three pe-
riods and five stations were generated randomly, i.e. 10 instances for
each of three levels for the number of part types (10, 20 and 30) using
the data of Yu et al. (2014) and Zhou et al. (2014). The data were gen-
erated as follows.
•Demands in each period () ~   ,

where  represents the amount of an additional de-
mand

•Component acquisition costs () ~ 
•Configuration changing costs () ~ 

•Pallet costs () ~ 

•Number of operations for a part type ~ 

•Operation processing times ~ 

•Loading/unloading times ~ 

•Transportation times ~ 

In addition, the limited number of pallets () was set to 60. The
performance measures are: (a) percentage gaps from the optimal sol-
ution values that obtained using the full enumeration method and (b)
CPU seconds.

Test results are summarized in <Table 1> (a), (b) and (c) that
show the average percentage gaps from optimal solution values
for three levels of the minimum allowable station utilization (0.6,
0.7 and 0.8). It can be seen from the tables that the heuristics pro-
posed in this study outperform the previous ones in overall aver-
ages due to the better last period configurations. Of the heuristics,
MB-TH was significantly better than MB-UT because it considers
both throughputs and costs. In fact, the overall average gaps of
MB-TH were 2.47%, 2.9% and 2.11% when the minimum allow-
able station utilization was 0.6, 0.7 and 0.8, respectively. To test
statistical difference among the heuristics, paired t-tests were done
using the average percentage gaps and the results showed that
MB-TH is statistically different from the others in the significance
level of 0.01. Finally, all the heuristics solve the test instances
within 8.2 seconds while the full enumeration method required
2108.0 seconds in overall average.

The second experiment was done for medium-to-large sized
test instances. For the test, 240 instances, i.e. 10 instances for each
of 24 combinations of three levels for the number of periods (3, 5
and 10), three levels for the number of stations (5, 7 and 9) and
three levels for the number of part types (10, 20 and 30), were
generated using the data generation method explained earlier. The
limited numbers of pallets were set to 60, 80 and 100, and the

162 Xuebin Li․Hyeon-Il Kim․Dong-Ho Lee

Table 1. Basic Case: Results for the Heuristics on Small Sized Test Instances
(a) Minimum allowable station utilization = 0.6

NP1 NS2 NPT3 F-TH F-UT B-UT MB-UT MB-TH

3 5

10 7.16* 17.38 22.87 5.74 1.92

20 5.57 12.16 11.45 5.55 3.41

30 4.35 13.50 11.86 9.41 2.07

Average 5.69 14.35 15.39 6.90 2.47
1Number of periods; 2Number of stations; 3Number of part types
* Average percentage gap from optimal solution values out of 10 instances.

(b) Minimum allowable station utilization = 0.7

NP NS NPT F-TH F-UT B-UT MB-UT MB-TH

3 5

10 12.19 30.11 18.96 6.33 2.61

20 5.28 12.51 10.76 5.50 3.13

30 5.25 14.44 14.11 10.83 2.96

Average 7.58 19.02 14.61 7.55 2.90

(c) Minimum allowable station utilization = 0.8

NP NS NPT F-TH F-UT B-UT MB-UT MB-TH

3 5

10 14.78 48.02 16.25 4.53 0.71

20 4.97 12.16 10.42 5.14 2.76

30 5.14 14.35 14.01 10.29 2.85

Average 8.30 24.85 13.56 6.65 2.11

Table 2. Basic Case: Results for the Heuristics on Medium-to-Large Sized Test Instances
(a) Minimum allowable station utilization = 0.6

NP NS NPT F-TH F-UT B-UT MB-UT MB-TH

3

7

10 17.70* 27.48 66.07 2.96 0.00

20 7.67 17.02 19.87 10.46 0.15

30 9.33 11.15 8.84 1.88 0.00

9

10 63.05 52.48 144.10 2.07 0.00

20 22.44 31.36 72.09 1.13 0.00

30 18.45 20.78 32.46 3.00 0.00

minimum allowable station utilizations were set to 0.6, 0.7 and
0.8 for the test instances with 5, 7 and 9 stations, respectively. The
performance measures are: (a) relative performance ratio (RPR)
since the optimal solutions could not be obtained; and (b) CPU
seconds, where the RPR of a heuristic for an instance is calculated
as

⋅  ,
where  is the total cost value obtained from heuristic  and
 is the best one among those obtained from all the heuristics.

Test results are summarized in <Tables 2> (a), (b) and (c) that

show the average RPR values of the heuristics for the three levels
of the minimum allowable station utilization. As in the test results
for the small sized instances, the new heuristics perform better
than the previous ones in overall averages and MB-TH performs
the best. Paired t-tests were also done and the results showed that
MB-TH is statistically better than the others in the significance
level of 0.01, which shows the effectiveness of the through-
put/cost ratio based local search that determines the better last pe-
riod configurations. Finally, all the heuristics gave the solutions
within 24.5 seconds.

Capacity Scalability Planning Algorithms for Job-shop-type Reconfigurable Manufacturing Systems with Dynamic Demands 163

Table 2. Basic Case: Results for the Heuristics on Medium-to-Large Sized Test Instances (Continued)
NP NS NPT F-TH F-UT B-UT MB-UT MB-TH

5

5
10 9.37 17.63 17.36 3.90 0.22
20 2.37 8.04 7.78 2.81 0.99
30 3.45 8.69 5.02 2.26 0.46

7
10 15.93 28.09 69.43 3.28 0.00
20 4.53 22.02 22.14 10.43 0.23
30 6.46 11.14 9.58 3.29 0.32

9
10 67.84 50.72 137.91 1.61 0.00
20 17.13 30.71 69.02 2.16 0.07
30 16.78 21.13 37.92 0.29 0.18

10

5
10 6.29 23.47 17.35 9.92 1.26
20 2.52 12.51 9.32 5.24 1.30
30 0.81 7.44 5.57 2.94 0.98

7
10 11.56 13.13 49.15 1.30 0.00
20 3.47 11.97 9.69 2.43 0.78
30 4.44 10.72 8.84 2.55 1.09

9
10 51.29 50.07 125.99 0.89 0.00
20 14.75 20.03 45.91 2.85 0.09
30 10.09 21.68 21.63 2.94 0.54

Average 16.15 22.06 42.21 3.44 0.36

See the footnotes of <Table 1>.
* Average relative performance ratio out of 10 instances

(b) Minimum allowable station utilization = 0.7
NP NS NPT F-TH F-UT B-UT MB-UT MB-TH

3

7
10 61.32 70.37 55.56 5.13 0.00
20 9.35 21.94 18.06 10.66 0.15
30 9.13 10.95 8.74 1.69 0.01

9
10 135.20 119.46 116.27 4.60 0.00
20 98.90 83.92 80.85 0.98 0.00
30 44.56 40.81 35.63 2.64 0.00

5

5
10 11.78 24.64 17.96 3.87 0.24
20 2.00 7.65 6.91 3.04 0.43
30 3.74 8.99 5.89 2.44 0.42

7
10 53.94 78.96 71.20 3.19 0.91
20 6.06 26.21 19.14 9.96 0.15
30 6.56 11.34 9.69 3.27 0.41

9
10 139.22 131.30 125.25 0.00 0.00
20 90.53 82.52 77.28 1.90 0.07
30 58.71 51.92 47.21 0.29 0.15

10

5
10 5.94 21.67 11.50 8.63 1.62
20 1.72 11.67 10.21 7.15 1.97
30 0.70 7.34 5.93 3.38 0.98

7
10 44.42 67.59 59.57 0.83 0.50
20 4.23 9.99 8.90 2.62 0.88
30 4.03 10.52 8.36 3.71 1.65

9
10 151.01 138.38 130.32 1.91 0.18
20 76.57 65.37 59.03 3.64 0.43
30 22.79 26.38 19.53 3.46 0.37

Average 43.43 47.08 42.04 3.71 0.48

164 Xuebin Li․Hyeon-Il Kim․Dong-Ho Lee

Table 2. Basic Case: Results for the Heuristics on Medium-to-Large Sized Test Instances (Continued)
(c) Minimum allowable station utilization = 0.8

NP NS NPT F-TH F-UT B-UT MB-UT MB-TH

3

7
10 77.09 107.82 50.05 6.26 0.00
20 21.00 33.57 17.74 10.66 0.17
30 9.10 13.87 8.71 1.62 0.01

9
10 225.18 176.84 94.58 0.09 0.00
20 206.88 167.74 77.45 1.74 0.00
30 134.31 105.22 35.51 3.07 0.00

5

5
10 15.88 36.53 17.45 4.75 0.91
20 2.30 7.98 7.24 3.51 0.72
30 3.30 8.53 5.44 2.69 0.49

7
10 71.60 98.09 57.42 2.55 0.00
20 19.32 28.29 19.37 10.87 0.00
30 6.79 12.00 9.53 3.12 0.03

9
10 222.33 182.72 91.03 4.43 0.00
20 197.32 167.25 76.91 1.92 0.07
30 158.71 118.16 47.61 0.22 0.19

10

5
10 8.42 22.79 10.95 7.48 0.52
20 1.46 11.34 9.87 7.49 2.87
30 0.86 7.47 6.11 3.57 1.49

7
10 73.49 98.07 55.73 0.00 0.00
20 6.00 13.73 8.80 1.79 0.10
30 4.35 11.39 9.01 3.66 2.18

9
10 244.31 187.21 112.57 2.45 0.00
20 231.35 142.74 58.51 3.81 0.12
30 103.97 57.12 19.06 3.32 0.50

Average 85.22 75.69 37.78 3.80 0.43

3. General Case

This section describes the general case with fluctuating demands.
After the basic nonlinear integer programming model is extended,
two variable neighborhood search algorithms and their test results
are presented.

3.1 Problem Description

The general case is the same as the basic one except that the de-
mands are fluctuating, i.e. increasing or decreasing, over a planning
horizon. Therefore, the general case can be defined as follows. For
given fluctuating demands of multiple product types, the problem is
to determine the number of system components to satisfy the de-
mands in each period of a planning horizon for the objective of mini-
mizing the sum of component acquisition/removal and configuration
change costs. As in the basic case, the constraints are demand re-
quirements, the limited number of pallets and the minimum allow-
able station utilization. It is assumed that the pallets are acquired at

the beginning of the planning horizon.
Let  and  denote the removal cost of a component and the

number of removed components at station  in period ,
respectively. Then, the general case can be formulated as the follow-
ing nonlinear integer programming model.

[P-FD] Minimize
 ∑  

 ∑  
 ⋅ ⋅ ⋅

 ⋅  …

subject to
   ≥  for all  and  (1)
  ≥  for all    …  and  (2)
  ≤ ⋅ for all  and  (3')
 ≤   … ≤  (4')
     for all  (5')
⋅   for all  and  (6')
  ≥  and integers for all  and  (7')
∈ for all  and  (8)

Capacity Scalability Planning Algorithms for Job-shop-type Reconfigurable Manufacturing Systems with Dynamic Demands 165

Figure 3. Ordinary VNS Algorithm: Overview

The objective function represents the sum of component acquis-
ition/removal and configuration change costs over the planning
horizon. Constraint (3') ensures that a component acquisition/re-
moval occurs in a period if there is a configuration change in that
period. Constraints (4') and (5') represent the limited number of pal-
lets and there are no system components at the beginning of the plan-
ning horizon, respectively. Constraint (6') ensures that acquisition
and removal of the same component cannot occur at the same time
in a period. Finally, the remaining constraints (7') and (8) represent
the conditions of decision variables.

It can be easily seen that the problem [P-FD] is harder than
[P-NID] because components can be removed according to fluctuat-
ing demands and hence the solution space gets much larger.
Therefore, instead of simple local search heuristics, this study adopts
the meta-heuristic approach.

3.2 Solution Algorithms

This section explains the two variable neighborhood search algo-
rithms proposed in this study, i.e. ordinary and hybrid ones. Variable
neighborhood search (VNS), proposed by Mladenović and Hansen
(1997), is a meta-heuristic that explores a set of predefined neighbor-
hood structures successively to escape from local optimums. See

Hansen et al. (2017) for more details on the VNS algorithm.

(1) Ordinary VNS algorithm
An overview of the ordinary VNS algorithm is shown in Figure 3.

As can be seen in the figure, the algorithm consists of four main steps:
(a) obtaining an initial solution; (b) generating shaking solutions us-
ing different neighborhood structures; (c) local search that improves
the shaking solution and (d) termination. In the algorithm, a solution
is represented by an ×  matrix  , where  denotes the
number of components at station  in period . Therefore, the  th
column vector     … 

 represents the config-
uration with  pallets in period . The details of each step are ex-
plained below.

Step 1. Obtaining an initial solution
An initial solution, denoted as   

  , is obtained by de-
termining the feasible configuration in each period using the first step
of the MB-UT heuristic, i.e. Step 1 of procedure 1.

Step 2. Shaking
Shaking is done to escape from the local optimums by changing

neighborhood structures. More specifically, from the current in-
cumbent solution , a shaking solution is obtained as follows. First,

166 Xuebin Li․Hyeon-Il Kim․Dong-Ho Lee

(a) OCC_MP

(b) MCC_OP

(c) MCR_OP

Figure 4. Neighborhood Structures: Examples

a neighborhood structure  ′  is selected randomly. Then, a fea-
sible solution  that satisfies the demand and the minimum allow-
able utilization constraints is generated randomly using the selected
neighborhood structure  ′ , where ∈ ′ . Finally, a fea-
sible shaking solution ′ is obtained by decreasing the number of
pallets in  to the minimum possible one.

In this study, the following neighborhood structures are proposed.
One component change in multiple periods (OCC-MP). This method

generates a feasible neighborhood solution by selecting _
different periods randomly and then changing the number of compo-
nents at a random station in each of the periods in such a way that the
changed number does not exceed the maximum number of compo-
nents in the initial solution, i.e. 

 . <Figure 4 (a)> shows
an example with _  , in which periods 2 and 3 are selected
and then the number of components at station 3 (2) in period 2 (3) is
changed from 2 (4) to 3 (2).

Multiple component changes in one period (MCC-OP). This method
generates a feasible neighborhood solution by selecting a period ran-
domly and then adding or removing one component randomly at
each of _ random stations in that period. <Figure 4(b)>
shows an example with _  , in which period 2 is selected
and then one component is removed at station 1 while added at sta-
tions 3 and 4.

Multiple component replacements in one period (MCR-OP). This
method generates a feasible neighborhood solution by selecting a pe-
riod randomly and then replacing its number of components at each
of _ random stations by that of the random adjacent period.
<Figure 4 (c)> shows an example with _  , in which peri-
od 2 is selected and then the number of components at station 2 (4)
is replaced by 4 (3) in the adjacent period 3.

Step 3. Local search improvement
This step improves the shaking solutions by the neighborhood

structures explained earlier. Specifically, a neighborhood solution is
generated from the current shaking solution ′ using each of
OCC_MP, MCC_OP and MCR_OP methods, and the best one ″
is selected. If ″ improves the current best solution, the best solution
is updated and the next shaking is done. Otherwise, the local search
is done for another shaking solution generated by an unused neigh-
borhood structure. Note that the iteration count is reinitialized to 0 if
an improved solution is obtained by the consecutive shaking and lo-
cal search improvement steps, while increased by 1, otherwise.

Step 4. Termination
The ordinary VNS algorithm is terminated when there is no im-

provement for a certain number _ of consecutive iterations.

(2) Hybrid VNS Algorithm
The hybrid VNS algorithm is the same as the ordinary one ex-

cept that the simulated annealing (SA) technique is used to allow
non-improving moves in the local search improvement. Let  
and ″ denote the current best solution and the new solution ob-
tained by the shaking and local search methods, respectively.
Then, in the local search improvement step, the new solution ″
is accepted if it improves the current best one  . Otherwise, it is
accepted with a specified probability Δ , where
Δ and  denote the difference in objective values of the
new and the current best solutions, i.e. Δ ″   , and
the temperature, respectively. denotes the objective value of
solution .) As in the ordinary SA algorithm, the temperature is
decreased by   ⋅, where  denotes a pos-
itive cooling ratio less than 1 and  is the temperature dur-
ing  th epoch, i.e. the number  of movements made with the
same temperature. Note that another shaking solution is generated
using an unused neighborhood structure if the new solution is not
accepted and the iteration count is increased by 1 when no im-
proved solution can be obtained by all shaking solutions. Finally,
the hybrid VNS algorithm is terminated when no improvement
occurs for a certain number _ of consecutive iterations.

3.3 Computational Results

To test the performance of the VNS algorithms, computational ex-
periments were done and the results are reported in this section. The
VNS algorithms were coded in Python 3.1 and the tests were done on
a PC with an Intel core i9 processor at 3.42 GHz clock speed with
64GB RAM memory.

Before the main tests, a preliminary test was done to set the param-
eters of the hybrid VNS algorithm. Specifically, the best one was se-
lected using RPR values after comparing six combinations of three

Capacity Scalability Planning Algorithms for Job-shop-type Reconfigurable Manufacturing Systems with Dynamic Demands 167

Table 3. Test results for Setting Parameters of hybrid VNS Algorithm

NP NS NPT
  

  

  

  

  

  

  

  

  

  

  

  

3 5 10 0.37* 0.00 0.04 0.04 0.27 0.35
5 7 20 0.74 1.21 0.72 0.48 1.38 2.11

10 9 30 1.89 2.26 2.18 1.68 1.83 1.16
Average 1.00 1.16 0.98 0.74 1.16 1.20

See the footnotes of <Table 1>.
* Average relative performance ratio out of 10 instances.

Table 4. General Case: Optimality Gaps of VNS Algorithms for Small Sized Test Instances
(a) Minimum allowable station utilization = 0.6

NP NS NPT
Ordinary VNS Hybrid VNS

APG Nopt APG Nopt

3 5
10 0.09* 8** 0.04 9
20 0.48 7 0.10 7
30 0.53 4 0.12 8

Average 0.37 0.09

See the footnotes of <Table 1>.
* Average percentage gap from optimal solution values out of 10 instances.
** Number of optimal solutions obtained from the algorithm out of 10 instances.

levels for cooling ratio (0.6, 0.7 and 0.8) and two levels for epoch
length (6 and 8) when the initial temperature and the termination pa-
rameter were set 10000 and 30, respectively. For the test, 10 small
sized (3 periods, 5 stations and 10 part types), 10 medium sized (5 pe-
riods, 7 stations and 20 part types)and 10 large sized instances (10 pe-
riods, 9 stations and 30 part types) were generated randomly. The da-
ta were generated as follows.
•Demands in each period () ~ 

•Component acquisition costs () ~ 

•Component removal costs () ~ 

•Pallet costs () ~ 

•Configuration changing costs () ~ 

•Number of operations for a part type ~ 

•Operation processing times ~ 

•Loading/unloading times ~ 

•Transportation times ~ 

In addition, the limited numbers of pallets () were set to 60,
80 and 100 for the instances with 5, 7 and 9 stations, respectively, and
the minimum allowable station utilization was set to 0.7. Test results
are summarized in Table 3 that shows the average RPR values for all
parameter combinations. From the test results, the cooling ratio ()
and the epoch length () were set to 0.7 and 8, respectively.

The first test was done to show the absolute performance of the
VNS algorithms for small sized test instances. The performance
measures are: (a) percentage gaps from the optimal solution values;

and (b) CPU seconds, where the optimal solutions were obtained us-
ing the full enumeration method. For the test, 30 instances with 3 pe-
riods and 5 stations were generated randomly, i.e. 10 instances for
each of three levels for the number of part types (10, 20 and 30). The
data were generated using the method for the preliminary test and the
algorithms were terminated when there was no improvement for 30
consecutive iterations, i.e. _  _  .

Test results are summarized in <Table 4(a), (b) and (c)> that
show the average percentage gaps from the optimal solution values
for the three levels of the minimum allowable station utilization
(0.6, 0.7 and 0.8). It can be seen from the tables that the VNS algo-
rithms give optimal or near optimal solutions for all test instances.
Of the two algorithms, the hybrid VNS algorithm outperformed the
other in overall average and gave more optimal solutions as the
minimum allowable station utilization increases. A paired t-test
was done and the results showed that the hybrid algorithm is stat-
istically better than the other in the significance level of 0.01. The
overall average gaps of the hybrid algorithm were 0.09%, 0.06%
and 0.05% for utilization levels 0.6, 0.7 and 0.8, respectively. Also,
it gave the 77 optimal solutions out of 90 test instances. This im-
plies that the SA based solution acceptance criterion is an effective
method to escape from the local optimums in the local search im-
provement step. Finally, as can be seen in <Table 5>, the hybrid
VNS algorithm required more computation times, but gave the sol-
utions within 854.2 seconds. Note that the full enumeration method
required 3203.4 seconds in the overall average.

168 Xuebin Li․Hyeon-Il Kim․Dong-Ho Lee

Table 4. General Case: Optimality Gaps of VNS Algorithms for Small Sized Test Instances (Continued)
(b) Minimum allowable station utilization = 0.7

NP NS NPT
Ordinary VNS Hybrid VNS

APG Nopt APG Nopt

3 5
10 0.04 9 0.04 9
20 0.15 8 0.09 8
30 0.38 5 0.04 8

Average 0.19 0.06

(c) Minimum allowable station utilization = 0.8

NP NS NPT
Ordinary VNS Hybrid VNS

APG Nopt APG Nopt

3 5
10 0.00 10 0.00 10
20 0.23 6 0.14 8
30 0.53 3 0.00 10

Average 0.25 0.05

Table 5. General Case: CPU Seconds of VNS Algorithms for Small Sized Test Instances

NP NS NPT
Ordinary

VNS
Hybrid
VNS

3 5
10 44.9* 63.0
20 92.6 126.5
30 306.0 492.6

See the footnotes of <Table 1>.
* Average CPU second out of 30 instances for 3 levels of allowable utilization.

Table 6. General Case: RPR Values of VNS Algorithms for Medium-to-Large Sized Test Instances
(a) Minimum allowable station utilization = 0.6

NP NS NPT Ordinary VNS Hybrid VNS

3

7
10 0.17 (0.00, 0.91)* 0.00 (0.00, 0.00)
20 0.29 (0.00, 1.17) 0.04 (0.00, 0.27)
30 0.50 (0.00, 2.04) 0.14 (0.00, 0.87)

9
10 0.03 (0.00, 0.18) 0.00 (0.00, 0.00)
20 0.38 (0.00, 1.82) 0.05 (0.00, 0.24)
30 0.31 (0.00, 1.44) 0.08 (0.00, 0.46)

The second main test was done to compare the relative perform-
ance of the two VNS algorithms for medium-to-large sized test
instances. For the test, 240 instances, i.e. 10 instances for each of 24
combinations of three levels for the number of periods (3, 5 and 10),
three levels for the number of stations (5, 7 and 9) and three levels for
the number of part types (10, 20 and 30), were generated using the
method explained earlier. <Table 6(a), (b) and (c)> summarize the
average, minimum and maximum RPR values of the two algorithms
for the three levels of the minimum allowable station utilization. As
in the results for small sized test instances, the hybrid algorithm out-

performed the ordinary one in overall averages and gave smaller
RPR values as the minimum allowable station utilization increases,
which also implies that the SA based solution acceptance is an effec-
tive method. In fact, the result of paired t-test showed that the two al-
gorithms are statistically different in the significance level 0.01.
Finally, as can be seen in <Table 7>, there was not much difference
in computation times. In fact, the hybrid VNS algorithm required
1443.3 seconds in overall average, which is acceptable for practical
applications because capacity scalability planning is a system design
problem.

Table 6. General Case: RPR Values of VNS Algorithms for Medium-to-Large Sized Test Instances (Continued)
NP NS NPT Ordinary VNS Hybrid VNS

5

5
10 0.69 (0.00, 3.50) 0.33 (0.00, 1.86)
20 0.82 (0.00, 3.11) 0.14 (0.00, 1.01)
30 0.35 (0.00, 1.25) 0.00 (0.00, 0.02)

7
10 1.02 (0.00, 7.41) 0.14 (0.00, 1.43)
20 0.62 (0.00, 2.29) 0.31 (0.00, 1.34)
30 1.11 (0.00, 3.60) 0.21 (0.00, 1.83)

9
10 1.21 (0.00, 5.04) 0.33 (0.00, 3.08)
20 1.21 (0.00, 5.99) 0.15 (0.00, 0.78)
30 0.92 (0.00, 2.39) 0.04 (0.00, 0.37)

10

5
10 2.46 (0.00, 7.17) 0.69 (0.00, 5.45)
20 1.46 (0.00, 4.50) 0.26 (0.00, 1.26)
30 1.37 (0.00, 3.56) 0.21 (0.00, 1.32)

7
10 0.99 (0.00, 5.39) 0.00 (0.00, 0.00)
20 1.98 (0.00, 5.69) 0.17 (0.00, 0.84)
30 1.15 (0.00, 2.47) 0.06 (0.00, 0.62)

9
10 1.97 (0.00, 6.60) 0.43 (0.00, 2.77)
20 1.34 (0.00, 5.01) 0.29 (0.00, 1.08)
30 1.02 (0.00, 2.36) 0.18 (0.00, 1.78)

Average 0.97 0.18

See the footnotes of <Table 1>.
* Average relative performance ratio out of 10 instances (minimum and maximum in parenthesis)

(b) Minimum allowable station utilization = 0.7
NP NS NPT Ordinary VNS Hybrid VNS

3

7
10 0.15 (0.00, 1.06) 0.00 (0.00, 0.00)
20 0.35 (0.00, 2.86) 0.07 (0.00, 0.69)
30 0.31 (0.00, 2.02) 0.06 (0.00, 0.58)

9
10 0.17 (0.00, 1.70) 0.00 (0.00, 0.01)
20 0.13 (0.00, 0.91) 0.03 (0.00, 0.24)
30 0.27 (0.00, 1.07) 0.06 (0.00, 0.36)

5

5
10 0.84 (0.00, 7.53) 0.25 (0.00, 1.36)
20 1.11 (0.00, 4.19) 0.07 (0.00, 0.44)
30 1.07 (0.00, 2.97) 0.01 (0.00, 0.15)

7
10 1.77 (0.00, 4.64) 0.00 (0.00, 0.00)
20 1.28 (0.00, 4.71) 0.13 (0.00, 0.93)
30 1.08 (0.00, 4.92) 0.47 (0.00, 2.70)

9
10 0.63 (0.00, 2.69) 0.00 (0.00, 0.00)
20 0.61 (0.00, 1.51) 0.00 (0.00, 0.00)
30 1.13 (0.00, 2.44) 0.01 (0.00, 0.09)

10

5
10 3.14 (0.00, 9.04) 0.66 (0.00, 3.88)
20 1.41 (0.00, 5.63) 0.20 (0.00, 1.02)
30 1.16 (0.00, 4.95) 0.54 (0.00, 1.92)

7
10 2.37 (0.00, 9.74) 0.45 (0.00, 3.54)
20 2.90 (0.00, 8.51) 0.04 (0.00, 0.41)
30 1.08 (0.00, 5.20) 0.31 (0.00, 1.52)

9
10 3.25 (0.00, 13.95) 0.00 (0.00, 0.00)
20 1.61 (0.00, 5.43) 0.47 (0.00, 3.87)
30 1.58 (0.00, 3.80) 0.04 (0.00, 0.41)

Average 1.23 0.16

Capacity Scalability Planning Algorithms for Job-shop-type Reconfigurable Manufacturing Systems with Dynamic Demands 169

Table 6. General Case: RPR Values of VNS Algorithms for Medium-to-Large Sized Test Instances (Continued)
(c) Minimum allowable station utilization = 0.8

NP NS NPT Ordinary VNS Hybrid VNS

3

7
10 0.12 (0.00, 1.16) 0.00 (0.00, 0.00)
20 0.37 (0.00, 2.00) 0.00 (0.00, 0.00)
30 0.26 (0.00, 1.49) 0.04 (0.00, 0.26)

9
10 0.00 (0.00, 0.00) 0.00 (0.00, 0.00)
20 0.02 (0.00, 0.21) 0.00 (0.00, 0.00)
30 0.23 (0.00, 1.27) 0.00 (0.00, 0.00)

5

5
10 1.67 (0.00, 7.41) 0.00 (0.00, 0.00)
20 0.36 (0.00, 1.37) 0.12 (0.00, 1.05)
30 0.49 (0.00, 1.90) 0.13 (0.00, 0.74)

7
10 0.90 (0.00, 3.72) 0.00 (0.00, 0.00)
20 0.14 (0.00, 0.74) 0.05 (0.00, 0.44)
30 0.97 (0.00, 2.49) 0.07 (0.00, 0.71)

9
10 0.19 (0.00, 1.30) 0.00 (0.00, 0.00)
20 1.56 (0.00, 7.61) 0.00 (0.00, 0.00)
30 0.64 (0.00, 4.08) 0.11 (0.00, 0.59)

10

5
10 2.58 (0.00, 9.59) 0.06 (0.00, 0.58)
20 1.90 (0.26, 4.33) 0.00 (0.00, 0.00)
30 1.70 (0.00, 3.35) 0.01 (0.00, 0.06)

7
10 0.77 (0.00, 5.48) 0.07 (0.00, 0.61)
20 2.43 (0.00, 9.45) 0.17 (0.00, 1.13)
30 1.15 (0.00, 3.71) 0.02 (0.00, 0.10)

9
10 3.65 (0.00, 11.91) 0.02 (0.00, 0.16)
20 1.74 (0.00, 6.19) 0.16 (0.00, 1.13)
30 2.14 (0.00, 3.52) 0.04 (0.00, 0.38)

Average 1.08 0.04

Table 7. General Case: CPU Seconds of VNS Algorithms for Medium-to-Large Sized Test Instances
NP NS NPT Ordinary VNS Hybrid VNS

3

7
10 293.0* 329.3
20 335.4 433.0
30 634.4 804.2

9
10 1112.4 1529.7
20 1312.0 1781.6
30 1797.9 2064.6

5

5
10 71.7 78.4
20 136.6 156.5
30 404.8 587.8

7
10 359.9 494.1
20 559.8 741.1
30 884.6 1187.6

9
10 1469.5 1885.4
20 1783.0 2489.5
30 2379.7 3100.6

10

5
10 104.3 121.0
20 225.0 260.7
30 884.8 928.9

7
10 539.0 658.9
20 1050.8 1177.5
30 1695.4 2099.0

9
10 1959.6 2624.3
20 2833.2 3784.1
30 4640.7 5322.1

Average 1144.5 1443.3
See the footnotes of <Table 1>.
* Average CPU second out of 30 instances for 3 levels of allowable utilization.

170 Xuebin Li․Hyeon-Il Kim․Dong-Ho Lee

Capacity Scalability Planning Algorithms for Job-shop-type Reconfigurable Manufacturing Systems with Dynamic Demands 171

4. Concluding Remarks

This study addressed multi-period capacity scalability planning for
job-shop-type RMSs with dynamic demands over a planning
horizon. Two cases of the problem, basic case with non-decreasing
demands and general case with fluctuating demands, were consid-
ered with the practical constraints of the limited number of pallets
and the minimum allowable station utilization. For the basic case that
determines the system components to be added in each period of the
planning horizon, a nonlinear integer programming model was pro-
posed that includes a closed queueing network based estimations of
throughputs and utilizations for the objective of minimizing the sum
of component acquisition and configuration change costs. Then, two
backward heuristics, MB-UT and MB-TH, were proposed and com-
putation results showed that they outperform the existing ones sig-
nificantly because they start with better last period configurations. Of
the two heuristics, MB-TH that uses the throughput/cost ratio when
selecting the components to be added in the last period config-
urations performed better than the other. For the general case with an
additional decision of removing system components, the basic non-
linear programming model was extended, and then two VNS algo-
rithms were proposed for the objective of minimizing the sum of
component acquisition/removal and configuration change costs.
Computational results showed that the hybrid VNS algorithm with
the SA technique to allow non-improving moves outperforms the or-
dinary one.

This study can be extended in several directions. First, the optimal
solution approach is worth to be developed in the theoretical aspect.
Second, the current problem can be generalized into stochastic ones
for which various simulation optimization methods, such as sample
average approximation and robust optimization, can be used.
Finally, the digital twin technology can be used to evaluate the per-
formance of RMS configurations in real-time.

References

Albus, M. and Huber, M. F. (2023), Resource Reconfiguration and
Optimization in Brownfield Constrained Robotic Assembly Line
Balancing Problem, Journal of Manufacturing Systems, 67, 132-142.

Albus, M., Hornek, T., Kraus, W., and Huber, M. F. (2024), Towards
Scalability for Resource Reconfiguration in Robotic Assembly Line
Balancing Problem using aModified Genetic Algorithm, Journal of
Intelligent Manufacturing, DOI: 10.1007/s10845-023-02292-0.

Andersen, A. L., Brunoe, T. D., Nielsen, K., and Rösiö, C. (2017), Towards
a Generic Design Method for Reconfigurable Manufacturing Systems:
Analysis and Synthesis of Current Design Methods and Evaluation of
Supportive Tools, Journal of Manufacturing Systems, 42, 179-195.

Ashraf, M. and Hasan, F. (2018), Configuration Selection for a
Reconfigurable Manufacturing Flow Line Involving Part Production

with Operation Constraints, The International Journal of Advanced
Manufacturing Technology, 98(5), 2137-2156.

Bortolini, M., Galizia, F. G., and Mora, C. (2018), Reconfigurable
Manufacturing Systems: Literature Review and Research Trend,
Journal of Manufacturing Systems, 49, 93-106.

Dou, J., Dai, X., and Meng, Z. (2009), Graph Theory-based Approach to
Optimize Single-product Flow-line Configurations of RMS, The
International Journal of Advanced Manufacturing Technology, 41(9),
916-931.

Dou, J., Dai, X., and Meng, Z. (2010), Optimisation for Multi-part Flow-line
Configuration of Reconfigurable Manufacturing System Using GA,
International Journal of Production Research, 48(14), 4071-4100.

Hansen, P., Mladenović, N., Todosijević, R., and Hanafi, S. (2017), Variable
Neighborhood Search: Basics and Variants, EURO Journal on
Computational Optimization, 5(3), 423-454.

Gadalla, M. and Xue, D. (2016), Recent Advances in Research on
Reconfigurable Machine Tools: A Literature Review, International
Journal of Production Research, 55(5), 1440-1454.

Goyal, K. K., Jain, P. K., and Jain, M. (2012), Optimal Configuration
Selection for Reconfigurable Manufacturing System using NSGA II
and TOPSIS, International Journal of Production Research, 50(15),
4157-4191.

Koren, Y., Gu, X., and Guo, W. (2018), Reconfigurable Manufacturing
Systems: Principles, Design, and Future Trends, Frontiers of
Mechanical Engineering, 13(2), 121-136.

Koren, Y., Heisel U., Jovane, F., Moriwaki, T., Pritschow, G., Ulsoy, G.,
and Brussel, H. (1999), Reconfigurable Manufacturing Systems,
Annals of the CIRP, 48(2), 527-540.

Koren, Y. and Shpitalni, M. (2010), Design of Reconfigurable
Manufacturing Systems, Journal of Manufacturing Systems, 29(4),
130-141.

Koren, Y., Wang, W., and Gu, X. (2017), Value Creation through Design
for Scalability of Reconfigurable Manufacturing Systems,
International Journal of Production Research, 55(5), 1227-1242.

Kumar, G., Goyal, K. K., Batra, N. K., and Rani, D. (2022), Single Part
Reconfigurable Flow Line Design using Fuzzy Best Worst Method,
OPSEARCH, 59(2), 603-631.

Lee, S. and Ryu, K. (2021), Development of a Goal Model for
Self-Reconfigurable Manufacturing Systems, Journal of the Korean
Institute of Industrial Engineers, 47(2), 160-173.

Maganha, I., Silva, C., and Ferreira, L. M. D. (2019), The Layout Design
in Reconfigurable Manufacturing Systems: A Literature Review, The
International Journal of Advanced Manufacturing Technology, 105,
683-700.

Mladenović, N. and Hansen, P. (1997), Variable Neighborhood Search,
Computers & Operations Research, 24(11), 1097-1100.

Moghaddam, S. K., Houshmand, M., and Valilai, O. F. (2018),
Configuration Design in Scalable Reconfigurable Manufacturing
Systems (RMS): A Case of Single-product Flow Line (SPFL),
International Journal of Production Research, 56(11), 3932-3954.

Moghaddam, S. K., Houshmand, M., Saitou, K., and Valilai, O. F. (2020),
Configuration Design of Scalable Reconfigurable Manufacturing
Systems for Part Family, International Journal of Production Research,
58(10), 2974-2996.

Napoleone, A., Anderson, A. L., Brunoe, T. D., and Nielsen, K. (2023),
Towards Human-centric Reconfigurable Manufacturing Systems:
Literature Review of Reconfigurability Enablers for Reduced
Reconfiguration Effort and Classification Frameworks, Journal of
Manufacturing Systems, 67, 23-34.

172 Xuebin Li․Hyeon-Il Kim․Dong-Ho Lee

Napoleone, A., Pozzetti, A., and Macchi, M. (2018), A Framework to
Manage Reconfigurability in Manufacturing, International Journal of
Production Research, 56(11), 3815-3837.

Pansare, R., Yadav, G., and Nagare, M. R. (2023), Reconfigurable
Manufacturing Systems: A Systematic Review, Meta-analysis and
Future Research Directions, Journal of Engineering, Design and
Technology, 21(1), 228-265.

Solberg, J. J. (1977), A Mathematical Model of Computerized
Manufacturing Systems, Proceedings of the 4th International
Conference on Production Research, Tokyo, Japan.

Son, S. Y. (2000), Design Principles and Methodologies for Reconfigurable
Machining Systems, PhD Thesis. University of Michigan.

Spicer, P., and Carlo, H. J. (2007), Integrating Reconfiguration Cost into
the Design of Multi-period Scalable Reconfigurable Manufacturing
Systems, Journal of Manufacturing Science and Engineering, 129(1),
202-210.

Tempelmeier, H., and Kuhn, H. (1993), Flexible Manufacturing Systems:
Decision Support for Design and Operation, John Wiley and Sons, New
York.

Wang, W., and Koren, Y. (2012), Scalability Planning for Reconfigurable
Manufacturing Systems, Journal of Manufacturing Systems, 31(2),
83-91.

Yang J. Son, Y. H., Lee D., Noh, S. D., Kim, H., Lee, J. S., Kim, Y. S., Won,
Y. (2021), A Flexible Jig for Reconfigurable and Flexible Assembly of
Smart Factory, Journal of the Korean Institute of Industrial Engineers,
47(1), 102-116.

Yelles-Chaouche, A. R., Gurevsky, E., Brahimi, N., and Dolgui, A. (2021),
Reconfigurable Manufacturing Systems from an Optimisation
Perspective: A Focused Review of Literature, International Journal of
Production Research, 59(21), 6400-6418.

Youssef, A. M. A. and EIMaraghy, H. A. (2006), Modelling and
Optimization of Multiple-aspect RMS Configurations, International
Journal of Production Research, 44(22), 4929-4958.

Yu, Z.-J., Shin, J.-H., and Lee, D.-H. (2014), An Operational-level Dynamic
Capacity Scalability Model for Reconfigurable Manufacturing
Systems, The International Journal of Industrial Engineering: Theory,
Applications and Practice, 21(6), 317-326.

Zhang, C., Dou, J., and Wang, P. (2023), Configuration Design of

Reconfigurable Single-product Robotic Assembly Line for Capacity
Scalability, Computers & Industrial Engineering, 185, 109682.

Zhou, Y.-D., Shin, J.-H., and Lee, D.-H. (2019), Loading and Scheduling
for Flexible Manufacturing Systems with Controllable Processing
Times, Engineering Optimization, 51(3), 412-426.

Author Profile

Xuebin Li received the B.S. degree in Mechanical Engineering from
Beijing Institute of Technology and the M.S. degree in Industrial
Engineering from Hanyang University. His research interests in-
clude manufacturing planning/scheduling and optimization.

Hyeon-Il Kim is a Ph.D. student at the Department of Industrial
Engineering, Hanyang University, Seoul, Republic of Korea. He re-
ceived the B.S. degree from Kyungsung University and M.S. degree
from Hanyang University, all in Industrial Engineering. His research
interests include design and operation of manufacturing/service sys-
tems, environmental conscious manufacturing, reverse logistics and
operations research applications.

Dong-Ho Lee is a professor at the Department of Industrial
Engineering, Hanyang University, Seoul, Republic of Korea. He re-
ceived the B.S. degree from Seoul National University and M.S./Ph.D.
degrees from Korea Advanced Institute of Science and Technology
(KAIST), all in Industrial Engineering. After earning the Ph.D. de-
gree, he worked as a post-doctoral research fellow at the Department
of Mechanical Engineering, Ecole Polytechnique Federale de
Lausanne (EPFL), Switzerland. His research interests include design
and operation of manufacturing/service systems, optimization theory
and applications, environmental conscious manufacturing and re-
verse logistics.

	Capacity Scalability Planning Algorithms for Job-shop-type Reconfigurable Manufacturing Systems with Dynamic Demands
	1. Introduction
	2. Basic case
	3. General Case
	4. Concluding Remarks
	References

