
Journal of the Korean Institute of Industrial Engineers https://doi.org/10.7232/JKIIE.2025.51.1.001
Vol. 51, No. 1, pp. 1-10, February 2025. © 2025 KIIE
ISSN 1225-0988 | EISSN 2234-6457

잡샵 일정계획 문제의 최적화를 위한

유전 알고리즘의 탐색 성능 향상 기법

백지원1․우종훈1,2†

1서울대학교 조선해양공학과 / 2서울대학교 해양시스템공학연구소

Enhancing Search Efficiency of Evolutionary Algorithm for
Job Shop Scheduling Problem via Predetermined

Sub-optimal Solutions
Jiwon Baek1․Jong Hun Woo1,2

1Department of Naval Architecture and Ocean Engineering, Seoul National University
2Research Institute of Marine Systems Engineering, Seoul National University

This paper introduces a novel evolutionary algorithm for the Job Shop Scheduling Problem (JSSP) using Genetic
Algorithm (GA). The methodology incorporates a new fitness function that aligns with the intrinsic nature of
JSSP, improving search efficiency for makespan optimization. The study proposes three enhancement methods
for GA, based on analyzing Machine Input Order (MIO) Score derived from Machine-Job Sequence (MJS) and
Machine-Operation Sequence (MOS). These methods intuitively leverage JSSP's structure, initiating searches
from near-optimal solutions regardless of problem size. This approach is expected to significantly improve GA's
efficiency, especially for larger problems.

†
Keywords: Scheduling, Genetic Algorithm, Job Shop, Optimization

1. Introduction

Scheduling plays a critical role in various domains, ranging from
manufacturing to transportation and service industries. Efficient
scheduling ensures the optimal utilization of resources, minimizes
costs, and maximizes productivity, making it a fundamental as-
pect of modern-day operations management. Many scheduling en-
vironments where there exists distinguished type of work, or jobs,
requiring subsequent operations in a predetermined order, with
each operations needs to be allocated to the limited number of re-
sources, can be modeled as Job Shop Scheduling Problem (JSSP).

JSSP is a combinatorial optimization problem that involves

scheduling a set of jobs on a set of machines, where each job con-
sists of a sequence of operations that must be processed on specif-
ic machines, subject to various constraints such as precedence and
resource availability. Due to its complexity, JSSP is recognized as
NP-hard, indicating that finding an optimal solution becomes in-
creasingly difficult as the problem size grows. During the last
decades, JSSP has been extensively studied, and the works varies
from the one in the field of conventional optimization technique
to those in the field of newly arising, metaheuristic approaches
and AI-based techniques.

Although conventional optimization techniques can suggest
mathematical insights to the problem, such as optimal value, or

이 논문은 서울대학교 해양시스템공학연구소의 지원을 받아 수행되었음.
†연락저자：우종훈 교수, 08826 서울시 관악구 관악로1 서울대학교 34동 410호, Tel: 02)880-7330, E-mail: j.woo@snu.ac.kr
2024년 7월 8일 접수; 2024년 8월 9일 수정본 접수; 2024년 9월 4일 게재 확정.

https://crossmark.crossref.org/dialog/?doi=10.7232/JKIIE.2025.51.1.001&domain=https://jkiie.org/&uri_scheme=http:&cm_version=v1.5

2 Jiwon Baek․Jong Hun Woo

the lower (or upper) bound of the specific object function such as
makespan, these approaches are limited in that they cannot effi-
ciently solve the problem with the increased complexity. To over-
come this, a number of studies have been conducted to apply met-
aheuristic approaches on JSSP. Genetic Algorithm (GA) is a well
known metaheuristic strategy for solving JSSP. Since suggested
by Holland (1975), GA showed outperforming result compared to
the traditional heuristic approaches when applied to the various
problems in the field of combinatorial optimization.

While GA and other metaheuristic approaches are not opti-
mization method and therefore does not guarantee the optimality
of the solution, these techniques are still useful in that they pro-
vide efficient, stable strategies for near-optimal solutions (Banu
Çalış and Serol Bulkan, 2012). The first attempt to adopt GA for
JSSP was by Davis (1985). Since then, various research efforts
have applied GA to JSSP. Nakano and Yamada (1991) used a
conventional GA for binary encoding of JSSP, employing meth-
ods like binary representations to design chromosomes and reduce
solution space. Zhou and Feng (2001) addressed JSSP with n jobs
and m machines by encoding only the initial job assignment on m
machines and assigning the remaining jobs based on priority
rules. They applied GA and later adopted neighborhood search
techniques to improve solution quality.

Mattfeld and Bierwirth (2004) encoded operation priorities in
permutation form, where machines select jobs based on priority at
each decision timestep. The resulting schedule is a non-delay
schedule. To create an optimal active schedule, they introduced a
look-ahead parameter, allowing the machine to remain idle until a
specific job arrives instead of selecting an immediate job.
Goncalves et al. (2005) also used priority rule-based encoding,
which required a separate decoding procedure. To achieve opti-
mal solutions, they introduced the concept of a parameterized ac-
tive schedule, allowing delay times between two consecutive jobs
on a machine.

A more general encoding technique, commonly referred to as
the repetitive permutation encoding, was initially researched by
Gen et al. (1994) and Bierwirth (1995). This method encodes
JSSP solutions by repeating numbers from 1 to n, m times. Cheng
et al. (1996) highlighted this technique as a representative encod-
ing method in their survey paper on applying GA to JSSP.

Subsequent efforts to optimize JSSP makespan using GA with
repetitive permutation encoding focused on two main directions:
The first direction focused on identifying characteristics of superi-
or candidate solutions to search in areas of the solution space that
are most likely to contain optimal solutions. Someya and
Yamamura (1999) introduced a search area adaptation procedure
to facilitate this process, which was further developed by

Watanabe et al. (2005). The second direction aimed to resolve the
early convergence issues of traditional GA by integrating other lo-
cal search heuristics or metaheuristic approaches. Zhang (2005)
suggested a hybrid GA combined with Simulated Annealing (SA),
generating neighborhood solutions based on critical paths of good
solutions and performing local searches. Tamilarasi (2010) also
proposed a GA combined with SA, adjusting parameters using the
temperature concept of simulated annealing. Park et al. (2003) in-
troduced Parallel GA (PGA), dividing the population into sub-
populations for independent evolution and diversity maintenance.
Over the past decades, extensive research has continued, consider-
ing various objectives beyond makespan minimization, such as
minimizing setup or tardiness and optimizing resource utilization.

This paper attempts to extend the domain of GA-based method-
ologies by suggesting a new fitness calculation method for the
evolutionary phase of the algorithm. The proposed approach en-
hances search efficiency and serves as an effective initialization
method, compatible with any problem size. Firstly, this paper will
take a brief look at the structure of JSSP and the application proc-
ess of GA to this problem. Then the new fitness function, named
as ‘MIO score’, will be introduced, along with the mathematical
characteristics of the problem that enables the use of this fitness
function efficient. Various methods of implementing ‘MIO score’
in the both initialization phase and evolutionary phase of the GA
algorithm will be suggested. Derived from the observation on the
graph structure of JSSP, the suggested function is expected to be
an efficient metric that enables efficient initialization and re-
production in evolutionary algorithms for JSSP.

2. Job Shop Scheduling Problem

The basic form of JSSP is defined as follows. There exist  jobs
    ···  and  machines, where   

 ··· , and each job  comprises  operations, denoted
as     ··· . Each operation occupies one of the
 machines for a duration of  time units and must be executed
in a predetermined sequence. Additionally, each job can only
have one operation in progress on a machine at any given time,
and each machine can process at most one operation concurrently,
subject to these constraints.

The solution to JSSP entails determining a schedule that sat-
isfies these constraints, which may be reduced to the problem of
determining the start times for all operations, or determining the
sequence of jobs (or operations) to be processed on each machine.
Typically, the objective of JSSP optimization is to minimize the
time required for all jobs to be completed, or makespan.

Enhancing Search Efficiency of Evolutionary Algorithm for Job Shop Scheduling Problem via Predetermined Sub-optimal Solutions 3

Figure 1. Disjunctive Graph Model of JSSP

 Index of jobs,   ⋯ 

 Index of operations,    ⋯ 

 Index of machines,     ⋯ 

 Index, or the work order of the operation within the set of operations requiring same machine
 Set of Jobs,  

 ⋯ 

 Set of operations comprising Job 

 Operation processed as th order on Job 

 Processing time of 

 Machine set, 
 ⋯ 

 Set of operations requiring Machine 

 Operation processed as th order on machine 

 Clique, or undirected graph consisting 

 ′ Directed path of disjunctive graph model consisting 

Table 1. Notations

JSSP can be modeled as a graph structured problem, namely
the classical disjunctive graph    ∪. An example of
the disjunctive graph representation of a simple job shop problem
is suggested in <Figure 1>. Here,  represents the set of vertices,
or operations of JSSP.  refers to the path, or the conjunctive
arcs that connect the operations of the same job according to the
precedence order, and  indicates a set of disjunctive arcs be-
tween operations required to be processed on the same machine.
Determining a JSSP schedule is equal to establishing the direction
of edges in the disjunctive graph (<Figure 1(a)>). Here, a directed
path within operations processed on the same machine is created,
thus indicating their working order, as in <Figure 1(b)>. In this
paper, the notations and indices for the elements of JSSP follow
the conventional notation suggested by Pinedo (2012) and are
shown in <Table 1>.

3. GA for JSSP

GA is an evolutionary algorithm inspired by the process of natural
selection and genetics. The optimization processed is handled by
maintaining a population of potential solutions, known as chro-
mosomes, and iteratively applying genetic operators such as se-
lection, crossover, and mutation to evolve better solutions over

successive generations.
In order to apply GA to JSSP, it is necessary to transform the

problem into a format suitable for genetic operators. This involves
encoding the solutions into chromosomes that can undergo genetic
operations. One widely used encoding method is the repeated per-
mutation encoding proposed by Gen et al. (1994). This encoding
represents solutions to JSSP as repeated permutations of integers
ranging from 1 to , with total length as × , where each in-
teger corresponds to a job. Upon decoding, each job number in-
dicates the assignment of an operation to a corresponding machine
at the respective time step. Each repeated permutation uniquely
represents a solution to JSSP, although the reverse is not necessa-
rily true. Therefore, the repeated permutation encoding method
proposed by Gen et al. (1994) can be classified as a many-to-1 en-
coding technique. This encoding method offers the advantage of
addressing some infeasibility issues that may arise when consider-
ing the solution space of JSSP as permutations of operations.

Executing random initialization as a part of evolutionary algo-
rithm can lead to infeasibility problems when the chromosomes
are represented after the permutation of the operation number.
This is due to the existence of precedence constraints between
operations. Representing arbitrary solutions with permutations of
operations can be interpreted as adding new directed edges that
connect operations to the existing graph structure. However, if

4 Jiwon Baek․Jong Hun Woo

these added directed edges combine with the existing structure to
form cyclic paths, infeasiblity problem may arise. To deal with
these constraints, masking operations is one of the most widely
used practice. When the operations that belong to the same job are
masked to a same number, the schedule can be always decoded in
a manner that always satisfies the precedence constraint, thereby
avoiding the creation of such cyclic paths and ensuring the feasi-
bility of solutions.

In practical, permutations ranging from 1 to ×  (the num-
ber of operations) are utilized as chromosomes in order to apply
genetic operators with ease, when combined with appropriate
masking strategy i.e. masking  numbers as a single integer.

3.1 Selection

In the selection phase of GA, individuals with higher fitness
values are more likely to be chosen for reproduction, mimicking
the process of natural selection. In the context of JSSP selecting
individuals with shorter makespans increases the likelihood of
generating offspring with improved scheduling solutions.

3.2 Evaluation

In GA, evaluation involves assessing the fitness of each in-
dividual chromosome within the population. This fitness evalua-
tion typically measures how well a chromosome’s solution per-
forms with respect to the problem’s objective function. In the con-
text of JSSP, evaluation refers to calculating the makespan asso-
ciated with each chromosome’s schedule, with the aim of identi-
fying chromosomes that represent more efficient scheduling
solutions.

3.3 Modification

Two types of modification strategy, the crossover and the muta-
tion, are the most frequently used. Crossover involves combining ge-
netic information from two parent chromosomes to produce off-
spring chromosomes with potentially superior characteristics.
However, if a certain crossover method result in violating the making
heuristic of individual chromosomes, the feasibility of the solution
cannot be guaranteed. That is, a repeated permutation that does not
repeat the job numbers for exact m times respectively, should be
avoided. Therefore, crossover operators such as Order Crossover
(OX) or Partially Mapped Crossover (PMX) are commonly em-
ployed to preserve the overall composition of the chromosome.
Mutation introduces random changes to individual chromosomes,
promoting diversity within the population and preventing premature

convergence to suboptimal solutions. When applied to JSSP, muta-
tion operations enable exploration of new scheduling configurations,
potentially leading to further reductions in makespan and enhance-
ment of solution quality.

3.4 Reproduction

During the reproduction phase, genetic operators such as cross-
over and mutation are applied to selected parent chromosomes, re-
sulting in the generation of two new offspring chromosomes.
These offspring chromosomes are incorporated into a new tempo-
rary population. This process is iterated until a new temporary
population of predetermined size is formed. Selected chromo-
somes constitute the new population, initiating the next iteration.

4. GA with MIO Score

One drawback of GA is their susceptibility to being influenced by
the initial solutions and getting trapped in local optima, making it
challenging to find global optimal solutions. To address this issue,
this study introduces a novel methodology called ‘MIO score’.
This methodology originates from the simple principle: “If a ma-
chine has to perform multiple operations, wouldn’t it be more ef-
ficient to prioritize them in the order of their urgency?”

Imagine someone should handle tasks for multiple individuals;
one will naturally prioritize tasks based on their customer’s
urgency. In JSSP, this “urgency” corresponds to the number of re-
maining operations ahead, and the preceding operations are consid-
ered more urgent compared to those at the behind. Thus, we derive
the following research hypothesis: If we prioritize the operations
within the operations that shares same machine, based on their job
sequence numbers, solutions obtained in this manner (called ‘MIO
solutions’) may serve as relatively close approximations to optimal
solutions, thereby enhancing search performance. Although MIO
solutions might not be optimal, using MIO solutions as guidance
towards the optimal solution in the initial phase of the search is ex-
pected to be significantly enhance the search speed.

4.1 Definition of MIO Score

Let  be the set of vertices   ⋯  where each 
refers to the arbitrary -th operation processed on machine . The
schedule of , denoted as  ′ is the directed path within the ele-
ments of . To implement the proposed method, this paper sug-
gests three concepts: First, a Machine-Job Sequence (MJS) of ma-
chine  indicates the sequence of job index of the operations in

Enhancing Search Efficiency of Evolutionary Algorithm for Job Shop Scheduling Problem via Predetermined Sub-optimal Solutions 5

 Figure 2. Framework of Calculating MIO Score. (a) A 3×4 JSSP specification (b) Chromosome encoding strategy for GA
(c) Decoding machine input order from the chromosome encoding (d) Calculation of MIO score

′. Second, a Machine-Operation Sequence (MOS) of machine
 indicates the sequence of relative positions within the job for
each operations in ′. The two type of indices can be clearly dis-
tinguished by incorporating the two functions  and  ,
where  returns the operational index of an arbitrary operation
 and  for the job index of .

For example, the disjunctive graph of JSSP suggested in
<Figure 2(a)> is comprised of   . These sets of verti-
ces are then converted to paths′ ′ ′ in <Figure 2(b)>.
In the illustrated example, the elements in ′    is
identical to   . The tuple of   re-
turns  , which is effectively described as the tuple of sub-
scripts of . Incorporating  and , MOS and MJS is defined
as a function of .

   ⋯  ∈′ (1)
   ⋯  ∈′ (2)

Finally, there exists a Sorted-MOS of machine , or
 , which is defined as the sequence of  sorted
in the ascending order.

   (3)

     
  



  (4)

Once the MOS and its sorted counterpart are obtained, the MIO
score is defined as the distance between MOS and SMOS. The
MIO score for each machine can be calculated using the
Spearman footrule distance between its MOS and SMOS, which
involves determining the element-wise absolute differences (L1
norm) between the MOS and SMOS rankings. The total MIO

score of a schedule is obtained by summing the MIO scores of all
machines. The mathematical formulation is presented in equation
(4). It is worth noting that various sorting distances, including
Kendall tau distance and bubble sort distance, can also be utilized
as metrics for calculating the MIO score.

<Figure 2> illustrates the process of extracting MJS and MOS
from the solution sequence, or chromosomes. <Figure 2(a)> de-
scribes a 3×4 JSSP, where chromosomes are represented as per-
mutations of 12 operations. In <Figure 2(b)>, these permutations
are decoded into ordered combinations where 1, 2, and 3 appear 4
times each to satisfy feasibility constraints. This decoded permu-
tation, with operation numbers assigned according to precedence
constraints, can be viewed as a solution to the JSSP. The job se-
quence number (MJS) for each job on four machines and the rela-
tive position of each job’s operations on those machines (MOS) is
obtained, as shown in <Figure 2(c)> and <Figure 2(d)>.

Looking at , the solution permutation indicates that the ma-
chine should process the operations after the job order 3-2-1. That
is,  needs to process the operations after the order −
−. Therefore,  in this case is 2-1-4. When sorted
in ascending order, SMOS() becomes 1-2-4, indicating that
performing  as the first operation would be more desirable.
Thus, a comparison is made between the solution order, 2-1-4,
and the desirable order, 1-2-4. The MIO score of  is de-
termined as 2 according to equation (4). Since the other machines
are already processing operations in the order of their relative ur-
gency, the MIO score of other machines are all zero. Thus the re-
sulting MIO score of the presented solution is determined as 2.

To further discussion, whether a solution set MIO score as zero
will be denoted as ‘MIO condition’. A solution satisfying that all
of its machines have their MOS in ascending order will be de-
noted as ‘MIO solution’.

6 Jiwon Baek․Jong Hun Woo

Figure 3. Correlation of MIO-score and Makespan

4.3 GA Strategy based on MIO

Under such research hypotheses, this paper proposes three
methods to enhance the performance of GA using the MIO score.
Firstly, incorporating the MIO score into the traditional make-
span-based fitness function is suggested. This allows individual
solutions to reach optimal makespan more rapidly and expected to
outperform the traditional GA method, as individuals with higher
MIO score might be more desirable in the long run.

The second method proposed in this paper is utilizing this MIO
solution (or those individuals with their machines’ MOS order al-
ready in ascending order) during the crossover process. Applying
crossover between existing solutions and MIO solutions can help
the evolutionary process converge to better solutions more
quickly. By following the direction indicated by the suboptimal
solution in the entire solution space, an individual might ”jump
up” closer to the optimal solution. However, it is important to note
that the solution minimizing the MIO score may not always be the
global optimal. Therefore, it is effective to gradually decrease the
probability of such crossovers as generations progress so that
those solutions superior to the MIO solution can be considered.

The third method is replacing solutions with MIO solutions
during the mutation process. This allows suboptimal MIO sol-
utions to be included in the entire population more rapidly. One
advantage of this approach is that the search process starts from
the point closer to the optimal solution in the entire solution
space. Gradually reducing the replacement probability is required
to favor the evolution of solutions superior to the MIO solution as
generations progress.

It is worth noting that obtaining MIO solutions in the form of
operation permutations which feasibility is guaranteed is crucial.
It can be demonstrated that it is always possible to obtain a MIO
solution from the given problem information. The simplest,
though not the only, method is to sequentially record operation

numbers starting from those positioned first within their re-
spective jobs, followed by the second, and so forth.

If the operation data matrix is arranged such that each row rep-
resents the set of operations for the same job, properly ordered ac-
cording to precedence constraints, this method can be understood
as listing operations starting from the first column. Once all ele-
ments of the first column are recorded, the same procedure is ap-
plied to the second column and continued thereafter. The resulting
operation permutation satisfies not only the precedence con-
straints of each job but also the precedence constraints of each
machine, automatically setting MOS in ascending order.

For instance, a possible MIO solution of the JSSP problem pre-
sented in <Figure 2(a)> is to simply put the operations in the se-
quence of       ⋯   . It is ob-
vious that this solution make  process the operations following
the order  , and let MOS of  be .

5. Experimental Results

To validate the research hypothesis, the correlation between MIO
score and makespan was analyzed. In this study, the correlation
was measured using the MIO score calculated by Spearman foot-
rule distance formula. Benchmark dataset suggested by Adams et
al. (1988) were selected as their optimal solutions are available.
400 optimal solutions, along with 1600 randomly generated sol-
utions were utilized to calculate Pearson correlation coefficient.
The results are as in <Figure 3>. As a result, Pearson correlation
coefficients were found to be 0.6132 and 0.6169 for the abz5 and
abz6 problems, respectively. This indicates a strong correlation
between MIO score and makespan.

Assuming the proposed hypothesis is valid, the proposed method-
ology was tested for its effectiveness using the benchmark datasets
abz5, abz6, abz7, abz8, and abz9, introduced by Adams et al. (1988),

Enhancing Search Efficiency of Evolutionary Algorithm for Job Shop Scheduling Problem via Predetermined Sub-optimal Solutions 7

Method 1
(Adaptive MIO Fitness)

Method 2
(MIO Crossover)

Method 3
(MIO Replacement)

Fitness Adaptive MIO Fitness
(makespan + MIO score) makespan makespan

Crossover PMX Crossover
PMX Crossover

One of the parents is
replaced to MIO solution

PMX Crossover

Replacement Single Swap Mutation Single Swap Mutation Single Swap Mutation
Individuals are randomly replaced to a MIO solution

Table 2. Comparison of 3 proposed methodologies

× Basic GA Adaptive
MIO Fitness

MIO
Crossover

MIO
Replacement

Adams
et al.

abz5
(10×10)

1362.4
(100)

1417.6
(100.8)

1340.6
(99.21)

1325.1
(97.95)

abz6
(10×10)

1053.4
(100)

1116.1
(101.99)

1003.4
(98.01)

991.2
(97.15)

abz7
(20×15)

891.9
(100)

964.2
(87.79)

806.3
(86.19)

789.8
(85.91)

abz8
(20×15)

935.9
(100)

987.7
(101.55)

831.5
(98.55)

811.1
(100.31)

abz9
(20×15)

944.8
(100)

1012
(102.79)

898.2
(100.28)

869.2
(98.87)

Custom
Dataset

20×20 1111.1
(100)

1175.9
(101.35)

984.5
(105.95)

976.1
(106.87)

30×30 1914.7
(100)

2030.3
(105.84)

1559.4
(91.08)

1531
(90.81)

40×40 2695.7
(100)

2843.2
(105.48)

2055.2
(98.37)

2008.3
(99.21)

50×20 2122.5
(100)

2226.2
(101.73)

1671.7
(93.25)

1646.5
(91.71)

100×15 3448.2
(100)

3552
(102.58)

2994.7
(76.93)

2960.1
(75.06)

Table 3. Average Makespan (normalized time) of 4 GA Algorithms

as well as custom-generated datasets. Custom-generated data dif-
fered only in the number of jobs and operations (machines), with the
appearance order of specific machines for each job randomized, and
processing time uniformly distributed between 11 and 40.

For comparison, the optimization process of minimizing make-
span was concurrently conducted using three proposed GA methods
from this study and a conventional GA approach. The experiments
were held with the same hyperparameters, using 100 individuals
evolving through 100 generations. In this study, the PMX (Partially
Mapped Crossover) operator was adopted to preserve the character-
istics of permutation encoding during crossover. The Roulette Wheel
selection method was used for selection, and single swap mutation for
the mutation operator. The probabilities for crossover and mutation
were set at 0.8 and 0.95, respectively, and were kept consistent across
all methods. The combinations of genetic operators used in the ex-
periments are presented in <Table 2>. More specific details of each
method are as follows:

Method 1: The adaptive MIO fitness is calculated as the
weighted sum of the makespan and the MIO score. The makespan
and MIO score of an individual are normalized using the averaged
values of the initial population. The weight of each term changes
over generations: the weight of the makespan score starts at 0.2
and gradually increases to 1.0, while the weight of the MIO score
starts at 0.8 and decreases to zero by the 100th generation.
Mathematical representation is in Equation (5).

      × 

   (5)

  ×  

   

    × 

  

Method 2 and 3: The probability of replacing one of the pa-
rents(method 2), or an individual (method 3) with an MIO sol-

8 Jiwon Baek․Jong Hun Woo

Figure 4. Comparison of the Enhancement of Search Efficiency

ution is both defined as ​. This probability starts at a value of
0.9 and decreases progressively by multiplying the original proba-
bility by 0.99 each time the MIO utilization process is executed.
This approach is to prevent the MIO solutions from dominating
the entire population, particularly after the evolution process has
sufficiently progressed.

Each experiment case was repeated 10 times to ensure robust-
ness of the proposed algorithm. The results are as in <Table 3>.
The percentile of performance enhancement with respect to basic
GA method are presented in <Figure 4>. The proposed methods
generally demonstrated comparable or improved performance
with respect to the execution time. In Method 1, the extra compu-
tations during the fitness calculation process led to a slight in-
crease in execution time. Conversely, in Methods 2 and 3, the re-
use of MIO solutions resulted in a slight reduction in execution
time.

Among the 10 problems, the search performance of Method 3
surpassed all other three. Following closely behind was Method 2.
It is also shown that the extent of performance improvement in
Methods 2 and 3 is more pronounced as the problem size grows
larger. The results of the experiment confirm that utilizing the in-
formation of MIO solutions can enhance the search efficiency
during the evolutionary process of GA for JSSP. Methods 2 and 3
shares similarity in that both enable utilizing MIO solutions dur-
ing the crossover process, but differ from the point that in Method
2, one of the parents are replaced only during the crossover proc-
ess and in Method 3, the MIO solution replaces the child and kept
in the population. The results suggest that the higher search effi-
ciency of Method 3, including both the makespan and the shorter
execution time, can be attributed to these differences.

<Figure 5> shows the overall tracking result of the makespan

and the MIO score of all collected individuals during the evolu-
tionary phase. The contradiction of evolved individual, marked as
red, and the initialized population, marked as blue, indicates that
MIO solutions offered the opportunity to rapidly approach opti-
mal solutions, thus greatly narrowing the gap between the pop-
ulation’s makespan and the optimal solution. One remark is that
even after the engagement of MIO solutions in the population, the
search for the optimal continued, leading to further advance to op-
timal solutions in areas where the MIO score was not 0. In the
proposed experiments, reducing the probability of crossover and
replacement as the evolutionary phase progressed helped avoid
the risk of converging to local optima, thereby enabling further
exploration. This observation suggests that while the MIO cross-
over or replacement strategy can provide efficient pre-determined
sub-optimal solutions, it does not necessarily guarantee the opti-
mality of the final solution. Therefore, in subsequent search phas-
es, alternative methods that do not rely solely on the MIO score,
which carries the risk of trapping in local optima, should be
employed.

On the other hand, the Adaptive Fitness Strategy (Method 1)
exhibited poorer search performance to basic GA. Introducing
the indirect objective of minimizing the MIO score by adding the
term in the fitness calculation appears to have led the opti-
mization process to overly prioritize the MIO score, hindering
the original objective of makespan minimization. This suggests
that while a schedule solution with a good makespan may have a
good MIO score, the converse does not necessarily hold true.
Therefore, when incorporating the philosophy proposed in this
study into optimization, it is necessary to selectively introduce
the features of MIO solutions rather than focusing primarily on
the MIO score.

Figure 5. Comparison between the Convergence of basic GA and the MIO-based GA

Enhancing Search Efficiency of Evolutionary Algorithm for Job Shop Scheduling Problem via Predetermined Sub-optimal Solutions 9

10 Jiwon Baek․Jong Hun Woo

6. Conclusion

In conclusion, this study proposed three methods to enhance the
performance of GA for solving JSSP based on the analysis of
Machine Input Order (MIO) Score which derived from
Machine-Job Sequence (MJS) and Machine-Operation Sequence
(MOS). The novelty of the proposed methods lies in initiating the
search from relatively close sub-optimal solutions to optimal
ones, regardless of problem size. Moreover, the construction heu-
ristic of MIO solutions is grounded in the observation of the graph
structure of JSSP and thus can be applied regardless of problem
size. The methodology proposed in this research can be applied to
initializing suitable candidate solutions in the makespan opti-
mization process for larger JSSP instances. Additionally, this phi-
losophy may have potential applications beyond JSSP, extending
to other scheduling problems as well.

However, it should be noted that the study has limitations as it
has not fully examined all hyperparameters necessary to reach an
optimal solution. This aspect could be improved through further
experiments and leveraging existing research findings.

References

Adams, J., Balas, E., and Zawack, D. (1988), The shifting bottleneck
procedure for job shop scheduling, Management Science, 34(3),
391-401.

Bierwirth, C. (1995), A generalized permutation approach to job shop
scheduling with genetic algorithms, Operations-Research-Spektrum,
17(2), 87-92.

Çaliş, B. and Bulkan, S. (2015), A research survey: Review of AI solution
strategies of job shop scheduling problem, Journal of Intelligent
Manufacturing, 26, 961-973.

Cheng, R., Gen, M., and Tsujimura, Y. (1996), A tutorial survey of job-shop
scheduling problems using genetic algorithms—I, Representation,
Computers & Industrial Engineering, 30(4), 983-997.

Davis, L. (1985), Job shop scheduling with genetic algorithms,
Proceedings of the International Conference on Genetic Algorithms
and their Applications, Hillsdale: Lawrence Erlbaum, 136-149.

Gen, M., Tsujimura, Y., and Kubota, E. (1994, October), Solving job-shop
scheduling problems by genetic algorithm, Proceedings of IEEE

International Conference on Systems, Man and Cybernetics, 2,
1577-1582. IEEE.

Gonçalves, J-F., de Magalhães Mendes, J-J., and Resende, M-G.(2005),
A hybrid genetic algorithm for the job shop scheduling problem,
European Journal of Operational Research, 167(1), 77-95.

Holland, J-H. (1975), Adaptation in Natural and Artificial Systems, The
University of Michigan Press, Ann Arbor, MI.

Mattfeld, D-C. and Bierwirth, C.(2004), An efficient genetic algorithm for
job shop scheduling with tardiness objectives, European Journal of
Operational Research, 155(3), 616-630.

Nakano, R. and Yamada, T. (1991, July), Conventional genetic algorithm
for job shop problems, In ICGA (Vol. 91, 474-479).

Park, B-J., Choi, H-R., and Kim, H-S. (2003), A hybrid genetic algorithm
for the job shop scheduling problems, Computers & Industrial
Engineering, 45(4), 597-613.

Pinedo, M-L. (2012), Scheduling (Vol. 29, 249), New York: Springer.
Someya, H. and Yamamura, M.(1999), A genetic algorithm without

parameters tuning and its application on the floorplan design problem,
Proceedings of GECCO ’99, 620-627.

Tamilarasi, A. (2010), An enhanced genetic algorithm with simulated
annealing for job-shop scheduling, International Journal of
Engineering, Science and Technology, 2(1), 144-151.

Watanabe, M., Ida, K., and Gen, M.(2005), A genetic algorithm with
modified crossover operator and search area adaptation for the
job-shop scheduling problem, Computers & Industrial Engineering,
48(4), 743-752.

Zhang, C., Li, P., Rao, Y., and Li, S.(2005), A new hybrid GA/SA
algorithm for the job shop scheduling problem, In Evolutionary
Computation in Combinatorial Optimization: 5th European
Conference, EvoCOP 2005, Lausanne, Switzerland, March 30-April
1, 2005. Proceedings 5, 246-259. Springer Berlin Heidelberg.

Zhou, H., Feng, Y., and Han, L.(2001), The hybrid heuristic genetic
algorithm for job shop scheduling, Computers & Industrial
Engineering, 40(3), 191-200.

저자소개

백지원 : 서울대학교 조선해양공학과에서 2024년 학사학위를

취득하고 현재 서울대학교 조선해양공학과 석사과정에 재학 중

이다. 연구분야는 최적화, 스케줄링 및 강화학습이다.

우종훈 : 서울대학교 조선해양공학과 교수로 재직 중이다. 연구

분야는 생산관리, 시뮬레이션, 최적화, 심층강화학습이다.

	Enhancing Search Efficiency of Evolutionary Algorithm for Job Shop Scheduling Problem via Predetermined Sub-optimal Solutions
	1. Introduction
	2. Job Shop Scheduling Problem
	3. GA for JSSP
	4. GA with MIO Score
	5. Experimental Result
	6. Conclusion
	References

