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This paper introduces a novel evolutionary algorithm for the Job Shop Scheduling Problem (JSSP) using Genetic 
Algorithm (GA). The methodology incorporates a new fitness function that aligns with the intrinsic nature of 
JSSP, improving search efficiency for makespan optimization. The study proposes three enhancement methods 
for GA, based on analyzing Machine Input Order (MIO) Score derived from Machine-Job Sequence (MJS) and 
Machine-Operation Sequence (MOS). These methods intuitively leverage JSSP's structure, initiating searches 
from near-optimal solutions regardless of problem size. This approach is expected to significantly improve GA's 
efficiency, especially for larger problems.
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1. Introduction

Scheduling plays a critical role in various domains, ranging from 
manufacturing to transportation and service industries. Efficient 
scheduling ensures the optimal utilization of resources, minimizes 
costs, and maximizes productivity, making it a fundamental as-
pect of modern-day operations management. Many scheduling en-
vironments where there exists distinguished type of work, or jobs, 
requiring subsequent operations in a predetermined order, with 
each operations needs to be allocated to the limited number of re-
sources, can be modeled as Job Shop Scheduling Problem (JSSP).

JSSP is a combinatorial optimization problem that involves 

scheduling a set of jobs on a set of machines, where each job con-
sists of a sequence of operations that must be processed on specif-
ic machines, subject to various constraints such as precedence and 
resource availability. Due to its complexity, JSSP is recognized as 
NP-hard, indicating that finding an optimal solution becomes in-
creasingly difficult as the problem size grows. During the last 
decades, JSSP has been extensively studied, and the works varies 
from the one in the field of conventional optimization technique 
to those in the field of newly arising, metaheuristic approaches 
and AI-based techniques.

Although conventional optimization techniques can suggest 
mathematical insights to the problem, such as optimal value, or 
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the lower (or upper) bound of the specific object function such as 
makespan, these approaches are limited in that they cannot effi-
ciently solve the problem with the increased complexity. To over-
come this, a number of studies have been conducted to apply met-
aheuristic approaches on JSSP. Genetic Algorithm (GA) is a well 
known metaheuristic strategy for solving JSSP. Since suggested 
by Holland (1975), GA showed outperforming result compared to 
the traditional heuristic approaches when applied to the various 
problems in the field of combinatorial optimization. 

While GA and other metaheuristic approaches are not opti-
mization method and therefore does not guarantee the optimality 
of the solution, these techniques are still useful in that they pro-
vide efficient, stable strategies for near-optimal solutions (Banu 
Çalış and Serol Bulkan, 2012). The first attempt to adopt GA for 
JSSP was by Davis (1985). Since then, various research efforts 
have applied GA to JSSP. Nakano and Yamada (1991) used a 
conventional GA for binary encoding of JSSP, employing meth-
ods like binary representations to design chromosomes and reduce 
solution space. Zhou and Feng (2001) addressed JSSP with n jobs 
and m machines by encoding only the initial job assignment on m 
machines and assigning the remaining jobs based on priority 
rules. They applied GA and later adopted neighborhood search 
techniques to improve solution quality.

Mattfeld and Bierwirth (2004) encoded operation priorities in 
permutation form, where machines select jobs based on priority at 
each decision timestep. The resulting schedule is a non-delay 
schedule. To create an optimal active schedule, they introduced a 
look-ahead parameter, allowing the machine to remain idle until a 
specific job arrives instead of selecting an immediate job. 
Goncalves et al. (2005) also used priority rule-based encoding, 
which required a separate decoding procedure. To achieve opti-
mal solutions, they introduced the concept of a parameterized ac-
tive schedule, allowing delay times between two consecutive jobs 
on a machine.

A more general encoding technique, commonly referred to as 
the repetitive permutation encoding, was initially researched by 
Gen et al. (1994) and Bierwirth (1995). This method encodes 
JSSP solutions by repeating numbers from 1 to n, m times. Cheng 
et al. (1996) highlighted this technique as a representative encod-
ing method in their survey paper on applying GA to JSSP.

Subsequent efforts to optimize JSSP makespan using GA with 
repetitive permutation encoding focused on two main directions: 
The first direction focused on identifying characteristics of superi-
or candidate solutions to search in areas of the solution space that 
are most likely to contain optimal solutions. Someya and 
Yamamura (1999) introduced a search area adaptation procedure 
to facilitate this process, which was further developed by 

Watanabe et al. (2005). The second direction aimed to resolve the 
early convergence issues of traditional GA by integrating other lo-
cal search heuristics or metaheuristic approaches. Zhang (2005) 
suggested a hybrid GA combined with Simulated Annealing (SA), 
generating neighborhood solutions based on critical paths of good 
solutions and performing local searches. Tamilarasi (2010) also 
proposed a GA combined with SA, adjusting parameters using the 
temperature concept of simulated annealing. Park et al. (2003) in-
troduced Parallel GA (PGA), dividing the population into sub-
populations for independent evolution and diversity maintenance. 
Over the past decades, extensive research has continued, consider-
ing various objectives beyond makespan minimization, such as 
minimizing setup or tardiness and optimizing resource utilization.

This paper attempts to extend the domain of GA-based method-
ologies by suggesting a new fitness calculation method for the 
evolutionary phase of the algorithm. The proposed approach en-
hances search efficiency and serves as an effective initialization 
method, compatible with any problem size. Firstly, this paper will 
take a brief look at the structure of JSSP and the application proc-
ess of GA to this problem. Then the new fitness function, named 
as ‘MIO score’, will be introduced, along with the mathematical 
characteristics of the problem that enables the use of this fitness 
function efficient. Various methods of implementing ‘MIO score’ 
in the both initialization phase and evolutionary phase of the GA 
algorithm will be suggested. Derived from the observation on the 
graph structure of JSSP, the suggested function is expected to be 
an efficient metric that enables efficient initialization and re-
production in evolutionary algorithms for JSSP. 

2. Job Shop Scheduling Problem

The basic form of JSSP is defined as follows. There exist  jobs 
    ···  and  machines, where   

 ··· , and each job   comprises  operations, denoted 
as     ··· . Each operation occupies one of the 
 machines for a duration of  time units and must be executed 
in a predetermined sequence. Additionally, each job can only 
have one operation in progress on a machine at any given time, 
and each machine can process at most one operation concurrently, 
subject to these constraints.

The solution to JSSP entails determining a schedule that sat-
isfies these constraints, which may be reduced to the problem of 
determining the start times for all operations, or determining the 
sequence of jobs (or operations) to be processed on each machine. 
Typically, the objective of JSSP optimization is to minimize the 
time required for all jobs to be completed, or makespan.
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Figure 1. Disjunctive Graph Model of JSSP

 Index of jobs,   ⋯ 

 Index of operations,    ⋯ 

 Index of machines,     ⋯ 

 Index, or the work order of the operation within the set of operations requiring same machine
 Set of Jobs,  

 ⋯ 

 Set of operations comprising Job 

 Operation processed as th order on Job 

 Processing time of 

 Machine set, 
 ⋯ 

 Set of operations requiring Machine 

 Operation processed as th order on machine 

 Clique, or undirected graph consisting 

 ′ Directed path of disjunctive graph model consisting 

Table 1. Notations

JSSP can be modeled as a graph structured problem, namely 
the classical disjunctive graph    ∪. An example of 
the disjunctive graph representation of a simple job shop problem 
is suggested in <Figure 1>. Here,  represents the set of vertices, 
or operations of JSSP.   refers to the path, or the conjunctive 
arcs that connect the operations of the same job according to the 
precedence order, and  indicates a set of disjunctive arcs be-
tween operations required to be processed on the same machine. 
Determining a JSSP schedule is equal to establishing the direction 
of edges in the disjunctive graph (<Figure 1(a)>). Here, a directed 
path within operations processed on the same machine is created, 
thus indicating their working order, as in <Figure 1(b)>. In this 
paper, the notations and indices for the elements of JSSP follow 
the conventional notation suggested by Pinedo (2012) and are 
shown in <Table 1>. 

3. GA for JSSP

GA is an evolutionary algorithm inspired by the process of natural 
selection and genetics. The optimization processed is handled by 
maintaining a population of potential solutions, known as chro-
mosomes, and iteratively applying genetic operators such as se-
lection, crossover, and mutation to evolve better solutions over 

successive generations. 
In order to apply GA to JSSP, it is necessary to transform the 

problem into a format suitable for genetic operators. This involves 
encoding the solutions into chromosomes that can undergo genetic 
operations. One widely used encoding method is the repeated per-
mutation encoding proposed by Gen et al. (1994). This encoding 
represents solutions to JSSP as repeated permutations of integers 
ranging from 1 to , with total length as × , where each in-
teger corresponds to a job. Upon decoding, each job number in-
dicates the assignment of an operation to a corresponding machine 
at the respective time step. Each repeated permutation uniquely 
represents a solution to JSSP, although the reverse is not necessa-
rily true. Therefore, the repeated permutation encoding method 
proposed by Gen et al. (1994) can be classified as a many-to-1 en-
coding technique. This encoding method offers the advantage of 
addressing some infeasibility issues that may arise when consider-
ing the solution space of JSSP as permutations of operations. 

Executing random initialization as a part of evolutionary algo-
rithm can lead to infeasibility problems when the chromosomes 
are represented after the permutation of the operation number. 
This is due to the existence of precedence constraints between 
operations. Representing arbitrary solutions with permutations of 
operations can be interpreted as adding new directed edges that 
connect operations to the existing graph structure. However, if 
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these added directed edges combine with the existing structure to 
form cyclic paths, infeasiblity problem may arise. To deal with 
these constraints, masking operations is one of the most widely 
used practice. When the operations that belong to the same job are 
masked to a same number, the schedule can be always decoded in 
a manner that always satisfies the precedence constraint, thereby 
avoiding the creation of such cyclic paths and ensuring the feasi-
bility of solutions.

In practical, permutations ranging from 1 to ×   (the num-
ber of operations) are utilized as chromosomes in order to apply 
genetic operators with ease, when combined with appropriate 
masking strategy i.e. masking  numbers as a single integer.

3.1 Selection

In the selection phase of GA, individuals with higher fitness 
values are more likely to be chosen for reproduction, mimicking 
the process of natural selection. In the context of JSSP selecting 
individuals with shorter makespans increases the likelihood of 
generating offspring with improved scheduling solutions.

3.2 Evaluation

In GA, evaluation involves assessing the fitness of each in-
dividual chromosome within the population. This fitness evalua-
tion typically measures how well a chromosome’s solution per-
forms with respect to the problem’s objective function. In the con-
text of JSSP, evaluation refers to calculating the makespan asso-
ciated with each chromosome’s schedule, with the aim of identi-
fying chromosomes that represent more efficient scheduling 
solutions.

3.3 Modification

Two types of modification strategy, the crossover and the muta-
tion, are the most frequently used. Crossover involves combining ge-
netic information from two parent chromosomes to produce off-
spring chromosomes with potentially superior characteristics. 
However, if a certain crossover method result in violating the making 
heuristic of individual chromosomes, the feasibility of the solution 
cannot be guaranteed. That is, a repeated permutation that does not 
repeat the job numbers for exact m times respectively, should be 
avoided. Therefore, crossover operators such as Order Crossover 
(OX) or Partially Mapped Crossover (PMX) are commonly em-
ployed to preserve the overall composition of the chromosome. 
Mutation introduces random changes to individual chromosomes, 
promoting diversity within the population and preventing premature 

convergence to suboptimal solutions. When applied to JSSP, muta-
tion operations enable exploration of new scheduling configurations, 
potentially leading to further reductions in makespan and enhance-
ment of solution quality.

3.4 Reproduction

During the reproduction phase, genetic operators such as cross-
over and mutation are applied to selected parent chromosomes, re-
sulting in the generation of two new offspring chromosomes. 
These offspring chromosomes are incorporated into a new tempo-
rary population. This process is iterated until a new temporary 
population of predetermined size is formed. Selected chromo-
somes constitute the new population, initiating the next iteration.

4. GA with MIO Score

One drawback of GA is their susceptibility to being influenced by 
the initial solutions and getting trapped in local optima, making it 
challenging to find global optimal solutions. To address this issue, 
this study introduces a novel methodology called ‘MIO score’. 
This methodology originates from the simple principle: “If a ma-
chine has to perform multiple operations, wouldn’t it be more ef-
ficient to prioritize them in the order of their urgency?”

Imagine someone should handle tasks for multiple individuals; 
one will naturally prioritize tasks based on their customer’s 
urgency. In JSSP, this “urgency” corresponds to the number of re-
maining operations ahead, and the preceding operations are consid-
ered more urgent compared to those at the behind. Thus, we derive 
the following research hypothesis: If we prioritize the operations 
within the operations that shares same machine, based on their job 
sequence numbers, solutions obtained in this manner (called ‘MIO 
solutions’) may serve as relatively close approximations to optimal 
solutions, thereby enhancing search performance. Although MIO 
solutions might not be optimal, using MIO solutions as guidance 
towards the optimal solution in the initial phase of the search is ex-
pected to be significantly enhance the search speed.

4.1 Definition of MIO Score

Let  be the set of vertices   ⋯  where each  
refers to the arbitrary -th operation processed on machine . The 
schedule of , denoted as  ′ is the directed path within the ele-
ments of . To implement the proposed method, this paper sug-
gests three concepts: First, a Machine-Job Sequence (MJS) of ma-
chine  indicates the sequence of job index of the operations in 
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          Figure 2. Framework of Calculating MIO Score. (a) A 3×4 JSSP specification (b) Chromosome encoding strategy for GA 
(c) Decoding machine input order from the chromosome encoding (d) Calculation of MIO score

′. Second, a Machine-Operation Sequence (MOS) of machine 
 indicates the sequence of relative positions within the job for 
each operations in ′. The two type of indices can be clearly dis-
tinguished by incorporating the two functions   and  , 
where   returns the operational index of an arbitrary operation 
 and   for the job index of . 

For example, the disjunctive graph of JSSP suggested in 
<Figure 2(a)> is comprised of   . These sets of verti-
ces are then converted to paths′ ′ ′ in <Figure 2(b)>. 
In the illustrated example, the elements in ′    is 
identical to   . The tuple of    re-
turns  , which is effectively described as the tuple of sub-
scripts of . Incorporating   and , MOS and MJS is defined 
as a function of .

   ⋯  ∈′ (1)
   ⋯  ∈′ (2)

Finally, there exists a Sorted-MOS of machine , or 
 , which is defined as the sequence of   sorted 
in the ascending order.

   (3)

     
  



  (4)

Once the MOS and its sorted counterpart are obtained, the MIO 
score is defined as the distance between MOS and SMOS. The 
MIO score for each machine can be calculated using the 
Spearman footrule distance between its MOS and SMOS, which 
involves determining the element-wise absolute differences (L1 
norm) between the MOS and SMOS rankings. The total MIO 

score of a schedule is obtained by summing the MIO scores of all 
machines. The mathematical formulation is presented in equation 
(4). It is worth noting that various sorting distances, including 
Kendall tau distance and bubble sort distance, can also be utilized 
as metrics for calculating the MIO score. 

<Figure 2> illustrates the process of extracting MJS and MOS 
from the solution sequence, or chromosomes. <Figure 2(a)> de-
scribes a 3×4 JSSP, where chromosomes are represented as per-
mutations of 12 operations. In <Figure 2(b)>, these permutations 
are decoded into ordered combinations where 1, 2, and 3 appear 4 
times each to satisfy feasibility constraints. This decoded permu-
tation, with operation numbers assigned according to precedence 
constraints, can be viewed as a solution to the JSSP. The job se-
quence number (MJS) for each job on four machines and the rela-
tive position of each job’s operations on those machines (MOS) is 
obtained, as shown in <Figure 2(c)> and <Figure 2(d)>. 

Looking at , the solution permutation indicates that the ma-
chine should process the operations after the job order 3-2-1. That 
is,  needs to process the operations after the order − 
−. Therefore,   in this case is 2-1-4. When sorted 
in ascending order, SMOS() becomes 1-2-4, indicating that 
performing  as the first operation would be more desirable. 
Thus, a comparison is made between the solution order, 2-1-4, 
and the desirable order, 1-2-4. The MIO score of  is de-
termined as 2 according to equation (4). Since the other machines 
are already processing operations in the order of their relative ur-
gency, the MIO score of other machines are all zero. Thus the re-
sulting MIO score of the presented solution is determined as 2. 

To further discussion, whether a solution set MIO score as zero 
will be denoted as ‘MIO condition’. A solution satisfying that all 
of its machines have their MOS in ascending order will be de-
noted as ‘MIO solution’.
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Figure 3. Correlation of MIO-score and Makespan

4.3 GA Strategy based on MIO

Under such research hypotheses, this paper proposes three 
methods to enhance the performance of GA using the MIO score. 
Firstly, incorporating the MIO score into the traditional make-
span-based fitness function is suggested. This allows individual 
solutions to reach optimal makespan more rapidly and expected to 
outperform the traditional GA method, as individuals with higher 
MIO score might be more desirable in the long run.

The second method proposed in this paper is utilizing this MIO 
solution (or those individuals with their machines’ MOS order al-
ready in ascending order) during the crossover process. Applying 
crossover between existing solutions and MIO solutions can help 
the evolutionary process converge to better solutions more 
quickly. By following the direction indicated by the suboptimal 
solution in the entire solution space, an individual might ”jump 
up” closer to the optimal solution. However, it is important to note 
that the solution minimizing the MIO score may not always be the 
global optimal. Therefore, it is effective to gradually decrease the 
probability of such crossovers as generations progress so that 
those solutions superior to the MIO solution can be considered.

The third method is replacing solutions with MIO solutions 
during the mutation process. This allows suboptimal MIO sol-
utions to be included in the entire population more rapidly. One 
advantage of this approach is that the search process starts from 
the point closer to the optimal solution in the entire solution 
space. Gradually reducing the replacement probability is required 
to favor the evolution of solutions superior to the MIO solution as 
generations progress. 

It is worth noting that obtaining MIO solutions in the form of 
operation permutations which feasibility is guaranteed is crucial. 
It can be demonstrated that it is always possible to obtain a MIO 
solution from the given problem information. The simplest, 
though not the only, method is to sequentially record operation 

numbers starting from those positioned first within their re-
spective jobs, followed by the second, and so forth. 

If the operation data matrix is arranged such that each row rep-
resents the set of operations for the same job, properly ordered ac-
cording to precedence constraints, this method can be understood 
as listing operations starting from the first column. Once all ele-
ments of the first column are recorded, the same procedure is ap-
plied to the second column and continued thereafter. The resulting 
operation permutation satisfies not only the precedence con-
straints of each job but also the precedence constraints of each 
machine, automatically setting MOS in ascending order. 

For instance, a possible MIO solution of the JSSP problem pre-
sented in <Figure 2(a)> is to simply put the operations in the se-
quence of       ⋯   . It is ob-
vious that this solution make  process the operations following 
the order  , and let MOS of  be .

5. Experimental Results

To validate the research hypothesis, the correlation between MIO 
score and makespan was analyzed. In this study, the correlation 
was measured using the MIO score calculated by Spearman foot-
rule distance formula. Benchmark dataset suggested by Adams et 
al. (1988) were selected as their optimal solutions are available. 
400 optimal solutions, along with 1600 randomly generated sol-
utions were utilized to calculate Pearson correlation coefficient. 
The results are as in <Figure 3>. As a result, Pearson correlation 
coefficients were found to be 0.6132 and 0.6169 for the abz5 and 
abz6 problems, respectively. This indicates a strong correlation 
between MIO score and makespan. 

Assuming the proposed hypothesis is valid, the proposed method-
ology was tested for its effectiveness using the benchmark datasets 
abz5, abz6, abz7, abz8, and abz9, introduced by Adams et al. (1988), 
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Method 1
(Adaptive MIO Fitness)

Method 2
(MIO Crossover)

Method 3
(MIO Replacement)

Fitness Adaptive MIO Fitness
(makespan + MIO score) makespan makespan

Crossover PMX Crossover
PMX Crossover

One of the parents is
replaced to MIO solution

PMX Crossover

Replacement Single Swap Mutation Single Swap Mutation Single Swap Mutation
Individuals are randomly replaced to a MIO solution

Table 2. Comparison of 3 proposed methodologies

× Basic GA Adaptive
MIO Fitness

MIO
Crossover

MIO
Replacement

Adams
et al.

abz5
(10×10)

1362.4
(100)

1417.6
(100.8)

1340.6
(99.21)

1325.1
(97.95)

abz6
(10×10)

1053.4
(100)

1116.1
(101.99)

1003.4
(98.01)

991.2
(97.15)

abz7
(20×15)

891.9
(100)

964.2
(87.79)

806.3
(86.19)

789.8
(85.91)

abz8
(20×15)

935.9
(100)

987.7
(101.55)

831.5
(98.55)

811.1
(100.31)

abz9
(20×15)

944.8
(100)

1012
(102.79)

898.2
(100.28)

869.2
(98.87)

Custom
Dataset

20×20 1111.1
(100)

1175.9
(101.35)

984.5
(105.95)

976.1
(106.87)

30×30 1914.7
(100)

2030.3
(105.84)

1559.4
(91.08)

1531
(90.81)

40×40 2695.7
(100)

2843.2
(105.48)

2055.2
(98.37)

2008.3
(99.21)

50×20 2122.5
(100)

2226.2
(101.73)

1671.7
(93.25)

1646.5
(91.71)

100×15 3448.2
(100)

3552
(102.58)

2994.7
(76.93)

2960.1
(75.06)

Table 3. Average Makespan (normalized time) of 4 GA Algorithms

as well as custom-generated datasets. Custom-generated data dif-
fered only in the number of jobs and operations (machines), with the 
appearance order of specific machines for each job randomized, and 
processing time uniformly distributed between 11 and 40.

For comparison, the optimization process of minimizing make-
span was concurrently conducted using three proposed GA methods 
from this study and a conventional GA approach. The experiments 
were held with the same hyperparameters, using 100 individuals 
evolving through 100 generations. In this study, the PMX (Partially 
Mapped Crossover) operator was adopted to preserve the character-
istics of permutation encoding during crossover. The Roulette Wheel 
selection method was used for selection, and single swap mutation for 
the mutation operator. The probabilities for crossover and mutation 
were set at 0.8 and 0.95, respectively, and were kept consistent across 
all methods. The combinations of genetic operators used in the ex-
periments are presented in <Table 2>. More specific details of each 
method are as follows: 

Method 1: The adaptive MIO fitness is calculated as the 
weighted sum of the makespan and the MIO score. The makespan 
and MIO score of an individual are normalized using the averaged 
values of the initial population. The weight of each term changes 
over generations: the weight of the makespan score starts at 0.2 
and gradually increases to 1.0, while the weight of the MIO score 
starts at 0.8 and decreases to zero by the 100th generation. 
Mathematical representation is in Equation (5).

      × 

   (5)

                                                ×  

   

    × 

  

Method 2 and 3: The probability of replacing one of the pa-
rents(method 2), or an individual (method 3) with an MIO sol-
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Figure 4. Comparison of the Enhancement of Search Efficiency

ution is both defined as ​. This probability starts at a value of 
0.9 and decreases progressively by multiplying the original proba-
bility by 0.99 each time the MIO utilization process is executed. 
This approach is to prevent the MIO solutions from dominating 
the entire population, particularly after the evolution process has 
sufficiently progressed.

Each experiment case was repeated 10 times to ensure robust-
ness of the proposed algorithm. The results are as in <Table 3>. 
The percentile of performance enhancement with respect to basic 
GA method are presented in <Figure 4>. The proposed methods 
generally demonstrated comparable or improved performance 
with respect to the execution time. In Method 1, the extra compu-
tations during the fitness calculation process led to a slight in-
crease in execution time. Conversely, in Methods 2 and 3, the re-
use of MIO solutions resulted in a slight reduction in execution 
time.

Among the 10 problems, the search performance of Method 3 
surpassed all other three. Following closely behind was Method 2. 
It is also shown that the extent of performance improvement in 
Methods 2 and 3 is more pronounced as the problem size grows 
larger. The results of the experiment confirm that utilizing the in-
formation of MIO solutions can enhance the search efficiency 
during the evolutionary process of GA for JSSP. Methods 2 and 3 
shares similarity in that both enable utilizing MIO solutions dur-
ing the crossover process, but differ from the point that in Method 
2, one of the parents are replaced only during the crossover proc-
ess and in Method 3, the MIO solution replaces the child and kept 
in the population. The results suggest that the higher search effi-
ciency of Method 3, including both the makespan and the shorter 
execution time, can be attributed to these differences.  

<Figure 5> shows the overall tracking result of the makespan 

and the MIO score of all collected individuals during the evolu-
tionary phase. The contradiction of evolved individual, marked as 
red, and the initialized population, marked as blue, indicates that 
MIO solutions offered the opportunity to rapidly approach opti-
mal solutions, thus greatly narrowing the gap between the pop-
ulation’s makespan and the optimal solution. One remark is that 
even after the engagement of MIO solutions in the population, the 
search for the optimal continued, leading to further advance to op-
timal solutions in areas where the MIO score was not 0. In the 
proposed experiments, reducing the probability of crossover and 
replacement as the evolutionary phase progressed helped avoid 
the risk of converging to local optima, thereby enabling further 
exploration. This observation suggests that while the MIO cross-
over or replacement strategy can provide efficient pre-determined 
sub-optimal solutions, it does not necessarily guarantee the opti-
mality of the final solution. Therefore, in subsequent search phas-
es, alternative methods that do not rely solely on the MIO score, 
which carries the risk of trapping in local optima, should be 
employed.

On the other hand, the Adaptive Fitness Strategy (Method 1) 
exhibited poorer search performance to basic GA. Introducing 
the indirect objective of minimizing the MIO score by adding the 
term in the fitness calculation appears to have led the opti-
mization process to overly prioritize the MIO score, hindering 
the original objective of makespan minimization. This suggests 
that while a schedule solution with a good makespan may have a 
good MIO score, the converse does not necessarily hold true. 
Therefore, when incorporating the philosophy proposed in this 
study into optimization, it is necessary to selectively introduce 
the features of MIO solutions rather than focusing primarily on 
the MIO score. 



Figure 5. Comparison between the Convergence of basic GA and the MIO-based GA
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6. Conclusion

In conclusion, this study proposed three methods to enhance the 
performance of GA for solving JSSP based on the analysis of 
Machine Input Order (MIO) Score which derived from 
Machine-Job Sequence (MJS) and Machine-Operation Sequence 
(MOS). The novelty of the proposed methods lies in initiating the 
search from relatively close sub-optimal solutions to optimal 
ones, regardless of problem size. Moreover, the construction heu-
ristic of MIO solutions is grounded in the observation of the graph 
structure of JSSP and thus can be applied regardless of problem 
size. The methodology proposed in this research can be applied to 
initializing suitable candidate solutions in the makespan opti-
mization process for larger JSSP instances. Additionally, this phi-
losophy may have potential applications beyond JSSP, extending 
to other scheduling problems as well.

However, it should be noted that the study has limitations as it 
has not fully examined all hyperparameters necessary to reach an 
optimal solution. This aspect could be improved through further 
experiments and leveraging existing research findings.
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