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In manufacturing process, data is collected in the form of correlated sequences. Multivariate to multivariate time 
series (MMTS) forecasting is an important factor in manufacturing. MMTS forecasting is a notoriously 
challenging task considering the need for incorporating both non-linear correlations between variables 
(inter-relationships) and temporal relationships of each univariate time series (intra-relationships) while 
forecasting future time steps of each univariate time series (UTS) simultaneously. However, previous works use 
deep learning models suited for low-dimensional data. These models are insufficient to model high-dimensional 
relationships inherent in multivariate time series (MTS) data. Furthermore, these models are less productive and 
efficient as they focus on predicting a single target variable from multiple input variables. Thus, we proposed 
two phase MTS forecasting. First, the proposed method learns the non-linear correlations between UTS 
(inter-relationship) through self-attention based convolutional autoencoder and conducts cause analysis. Second, 
it learns the temporal relationships (intra-relationships) of MTS data through temporal convolutional network 
and forecasts multiple target outputs. As an end-to-end model, the proposed method is more efficient and derives 
excellent experimental results. 
 *
Keywords: Cause Analysis, Inter-Relationship, Intra-Relationship, Multivariate to Multivariate Time Series 

Forecasting, Self-Attention Convolutional Autoencoder, Temporal Convolutional Network 

1. Introduction

Time series forecasting is a vital component in many industrial appli-
cations such as prognostics and health management, optimization, 

dynamic scheduling, and quality control (Morariu et al., 2018; 
Mawson et al., 2020). In current manufacturing domains, the in-
creasing availability of time series data and machinery data provides 
abundant information. This is because, millions of multivariate time 
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series (MTS) data are produced by the minute via different sensors 
embedded in industrial machineries and in-between manufacturing 
lines. As such, the demand for MTS forecasting has risen in the man-
ufacturing domain. For example, an engineer may schedule a timely 
maintenance event by forecasting machine MTS sensor outputs and 
predicting machinery remaining useful life (RUL). With the basic as-
sumption that individual variables of MTS data are dependent on 
each other, exploiting the non-linear dependencies between the vari-
ables and forecasting accurate future time steps has become a key 
factor to success in the highly competitive industry. 

Time series forecasting typically uses certain amount of time 
series data to construct a model that can forecast future outputs 
based on training data. To forecast accurate outputs, adequate rep-
resentative features of the training data must be well captured by 
the model.

For univariate time series (UTS) forecasting as general, two 
key components must be considered. As aforementioned, it is im-
portant to learn the characteristics of each time series data, sta-
tionary or non-stationary, has a trend, seasonality and so on (Braei 
and Wagner, 2020). Solving the long-term dependency problem 
also remains a chronic challenge of forecasting accurate future 
time steps. The ability to leverage the long-term dependencies be-
tween the current time step and the past time steps is critical to the 
prediction capacity. However, for MTS forecasting with high di-
mensional settings, addition to the prior components, the complex 
distribution of the input series and the non-linear correlations be-
tween the variables must be considered as well (Wu et al., 2020). 

When conducting time series forecasting, there are three main 
methods that are extensively utilized, statistical methods, ma-
chine learning methods, and deep learning methods. Traditional 
time series forecasting methods for univariate statistical methods 
are moving average (MA), autoregressive (AR), autoregressive 
integrated moving average (ARIMA), and exponential smoothing 
(ES) (Hyndman and Athanasopoulos, 2018). Multivariate stat-
istical methods are vector autoregressive (VAR) model and vector 
autoregressive moving average (VARMA). These models exhibit 
strong explanatory characteristics. They are not, however, suffi-
cient to model the relationships of large, complex, and high-di-
mensional data as these methods operate on linear state-spaces.

Machine learning forecasting models are random forest (RF) 
and regression models such as Support Vector Regressor (SVR). 
These have shown relative weakness in forecasting accuracy com-
pared to simple statistical models when train data is insufficient 
(Cerqueira et al., 2019). 

Deep learning methods are extensively utilized to solve multiple 
real-life problems in manufacturing domains and made exceptional 

impacts along the way. Recurrent Neural Network (RNN) models 
have been used to forecast occurrence of process failures. As exam-
ples, Meyes et al. (2019) have trained two Long Short-Term Memory 
(LSTM) networks with the auto-labeled data to predict process 
failures. Wang et al. (2019) have conducted predictive analytics in 
smart manufacturing using Gated Recurrent Unit (GRU) models 
(Chung et al., 2014). However, although LSTM and GRU are known 
to alleviate vanishing/exploding problems in sequence modeling 
tasks, studies have shown that gradient norms still decay ex-
ponentially fast with delay (DiPietro and Hager, 2020).

In the proposed method, to substitute the aforementioned mod-
els, temporal convolutional network (TCN) is proposed. TCN is 
comprised of dilated convolutions and causal convolutions and 
was advanced by the wavenet model (Oord et al., 2016). TCN ex-
hibits few advantageous characteristics such as parallelism, flexi-
ble receptive field size, and stable gradients. The model has re-
cently been used widely in sequence modeling and proved to out-
perform baseline recurrent architectures on a broad range of se-
quence modeling tasks (Bai et al., 2018). 

In this paper, we term the concept of the non-linearly correlated 
relationships between UTS data in MTS as inter-relationship and 
the temporal dependencies between the time domains within each 
UTS as intra-relationship.

Manufacturing MTS data, which encompasses inter-relation-
ships and intra-relationships, is innately high-dimensional in com-
parison to UTS data. As an example, vibration of a machinery 
may be affected by relative components of the machine with 
non-linear correlations (i.e., sound frequency, pressure, rotation, 
voltage and so on). For forecasting manufacturing MTS data, in-
ter-relationships are leveraged to capture the dependencies be-
tween multiple variables. Also, intra-relationships are leveraged 
to capture the temporal dependencies of the past and the current 
time step of individual univariate data. Current existing forecast-
ing models which are oriented toward UTS forecasting lack the 
ability to capture both the non-linear relationships and the tempo-
ral relationships. These models lack the ability to benefit from the 
high-dimensional settings of MTS data. Furthermore, current mul-
tivariate models are focused on forecasting a single representative 
target variable. On the contrary, multivariate to multivariate time 
series (MMTS) forecasting can be more beneficial in manufactur-
ing environments. As MMTS forecasts future values of corre-
sponding multiple input values simultaneously and provides cause 
analysis, it provides users with more explicit details of future sta-
tus of a machinery.

The input to Phase Ⅰ of the proposed method is a MTS data, 
   

  ⋯ 
, where  ∈  ×  is the time points of i-th 

variable in the MTS data. Input to Phase Ⅱ TCN module is 
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Figure 1. Architecture for MTS Inter-relationship Feature 
Extraction

 ′  ′ ⋯ ′, where  ′∈  , a condensed UTS repre-
sentation of    in Phase Ⅰ. MMTS forecast task is to forecast 
the corresponding 

  from the given MTS input data, while the 
ground truth value is expressed as  ′  ′ ⋯ ′. The 
Equation (1) is presented as follows:

 


  

  
  … 

  (1)

⋅  is the model,   is the range of future time steps,    learn-
able parameter, and    prediction error of the model.

In this paper, we proposed two phase MMTS forecasting. The pro-
posed method is a novel two phase MMTS forecasting model utilizing 
self-attention based convolutional autoencoder (SACAE) and tempo-
ral convolutional network (TCN). In summary, the contributions of 
this study are as follows.
∙ Phase Ⅰ of the proposed method captures the non-linear 

correlated relationships of MTS data with SACAE and con-
verts to UTS which represents the non-linear correlation of 
MTS data. 

∙ Phase Ⅱ captures the temporal pattern of representative UTS 
created by Phase Ⅰ. We enable MMTS forecasting by restor-
ing the forecasted representative UTS to corresponding varia-
bles in MTS data by the trained decoder of SACAE.

∙ The proposed method is unique in that MTS is forecasted 
not into a single target value but to original multi variables. 

∙ MMTS forecasting by the proposed method can provide de-
tailed information, cause analysis, of the state of MTS.

The rest of the paper is structured as follows: In Section Ⅱ, we 
introduce the underlying modules and why these modules are 
used in the proposed method. We then address the overall archi-
tecture of the proposed method and the operational sequences of 
the proposed method in detail in Section Ⅲ. Finally, in Section 
Ⅳ, we report experiments with multiple datasets that can demon-
strate how the proposed method exhibits advantages in MMTS 
forecasting compared to baseline sequence models.

2. Background

This section introduces the sub-modules used in the proposed 
method and the reason for implementing these modules, convolu-
tional autoencoder (CAE), self-attention, and TCN.

2.1 Convolutional Autoencoder 

CAE is a variant of neural network aimed at reconstruction and fea-

ture extraction. Convolutional Neural Network (CNN) can dynam-
ically generate key features from input images due to its local re-
ceptive field, weights sharing and pooling characteristics (Zhao et al., 
2017). Autoencoder (AE) can transform feature vectors into abstract 
feature vectors that can learn inter-relationship from high dimen-
sional data space to low dimensional data space (Yan and Han, 2018). 
In a previous study, Zheng et al. (2014) proposed feature learning 
technique for MTS data by separating MTS into UTS and using deep 
CNN to derive good classification results. This technique, however, 
has a major limitation that inter-relationship between UTS cannot be 
incorporated. To overcome this shortcoming, inspired by CNN and 
AE for their feature extraction characteristics, we explore these 
frameworks for MMTS forecasting. An aggregate of two models, 
CNN and AE, CAE extracts representative features of the local map 
of the given input. Different from the previous study, instead of sepa-
rating MTS into UTS, we jointly use MTS for feature extraction. With 
weight sharing structural characteristics of CNN, CAE has fewer 
training parameters, higher training efficiency, and avoids over-fit-
ting (Wu et al., 2021).

In the proposed method, CAE is used to extract non-linear rela-
tionships of multiple variables of MTS data. Adding local con-
volutions with AE, CAE can encode the original input by extract-
ing the local features of the input into a feature map. Then con-
volutional decoder decodes the extracted feature map into the 
original output. Due to the local feature capturing characteristics, 
multiple filters are used in the same convolutional layer of CAE 
to extract diverse features. To elaborate, MTS inter-relationship 
extraction is illustrated in <Figure 1>. 

The universal convolutional operation of CAE can be expressed 
as Equation (2):

    (2)

 and   are the weight parameters. ⋅  is the activation 
function and * denotes dot product of the convolutional layer and 
the pixels. The c-th filter scans the input matrix    and produces 
, output of the convolutional operation.
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Figure 2. Figure of CNN Convolutional Kernel

Figure 3. Self-attention in the Proposed Method, 1×1 Convolution 
is Applied to the Input to Create Query, Key, and Value. 
The Final Output is Added to the Input, Similar to the 
Residual Connection

After the convolutional operation, an activation function of 
Parametric Rectified Linear Unit (PReLU) is utilized. PReLU is 
an activation function that generalizes the traditional rectified unit 
with a slope for negative values. PReLU enables different types of 
nonlinearities for different layers and is expressed as Equation (3):

       

    ≤ 
(3)

    is the c-th channel input to the activation 
function  ⋅  and  is the coefficient for the control of neg-
ative part of the activation function. If  becomes 0, the activa-
tion function becomes ReLU. When  is a learnable parameter, 
Equation (3) is PReLU (He et al., 2015). 

2.2 Self-attention

CNN and its local convolutional kernel limit the convolutional 
operation to capture only local information of the kernel (Wu et 
al., 2021). <Figure 2> represents the convolutional kernel of 
CNN. If the kernel size becomes 1 x 3, the result is only depend-
ent on the three values of the receptive field. To secure a wider in-
formation, convolutions are stacked several times, or the size of 
the data is reduced through the pooling layer. However, widening 
the receptive field is not efficient as the depth of the network must 
become deep enough to secure a sufficient size of the receptive 
fields. This method is not a sufficient solve to the non-local de-
pendency problem. 

Wang et al.(2018) proposed a non-local neural network, a type 
of self-attention module, that is efficient and can be well in-
tegrated into the existing deep learning architectures. By im-
plementing the self-attention operations, the proposed model can 
capture the non-local dependencies by only the interactions be-
tween any two positions. Furthermore, analyzing the attention 
map created from the self-attention module enables cause analysis 
after MMTS forecasting. The self-attention module for the pro-
posed method is depicted in <Figure 3>.

The residual style of the self-attention module output is ex-
pressed as Equation (4), shown below.

′    (4)

The output feature map of the self-attention ∈ ××  is 

added to the original input ∈ ×× . 1, W, and C represent 
the height, the width, and the channel of the output of the con-
volutional operation and the output feature map. The residual 
style of the attention feature enables self-attention to be inserted 
in the last and the first layer of the convolutional layers of the en-
coder and the decoder of CAE. Self-attention module is calculated 
by the following Equation (5):

   



⋅ (5)

   and   are feature maps of a certain convolutional layer and 
⋅ , and  ⋅  are 1x1 convolutions.   transposes the 
variable. Applying 1×1 convolutions on the feature maps reduce 
the number of channels and computation cost (Wu et al., 2021). 
The attention weights are calculated by normalizing the output 
score of Equation (5). The attention weights are calculated by fol-
lowing Equation (6): 

  ∑  
× 

  (6)

Next, the attention weight is calculated with the input feature 
map to produce the attention applied output feature map . 
Equation of the output feature map is presented below in Equation 
(7):

 
  

 ψ ⋅ (7)

⋅  is 1×1 convolution. 
Considering Equation (5) is computed based on the relation-

ships between feature maps of the convolutional layer, the self-at-
tention module can mitigate local dependency issues. 
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Figure 4. Basic Structural Explanation of TCN

2.3 Temporal Convolutional Network

TCN is a variant of convolutional architectures for sequential da-
ta, which includes causal convolutions and dilated convolutions. In 
a previous study such as Bai et al. (2018), TCN architecture was ex-
perimented against traditional recurrent architectures across com-
prehensive sequence modeling tasks. In the previous study it was 
concluded that TCN outperforms generic LSTMs and GRUs. 

For MMTS forecasting it is required to reproduce the original 
MTS input from the condensed UTS representation. Thus, an accu-
rate forecast ability of the condensed UTS representation must be a 
foreground operation. However, LSTMs and GRUs exhibit vanish-
ing/exploding gradient problems, which we deemed inappropriate 
for accurate forecasting of the condensed UTS representation.

TCN lists several advantages compared to these models. One of 
the major advantages of TCN is its ability to stabilize gradients. 
TCN can avoid vanishing/exploding gradients as it has a back-
propagation path different from the temporal direction of the se-
quence (Bai et al., 2018).

Before explaining the model structure of TCN, we define the nature 
of sequence modeling task of the condensed UTS representation, 
where the condensed UTS representation ′  ′ … ′ is 
trained to predict the expected output of  

′  … 
′ .  is the range 

of future time steps. The core of the sequence prediction lies in relying 
only on the given past input sequence of  ′ … ′  and not on the 
future input sequence of   

′  …  
′  to predict the output 

′ . 
The general function is as Equation (8):


′  ′ … ′  (8)

⋅   is TCN model.
Causal convolutions satisfy the aforementioned point where the 

nature of time series data, the future output at time  must sat-
isfy the ‘causality’ of relying on only the present and the past, not 
the future data points. TCN uses 1-D convolution with zero-pad-
ding with ‘kernel size -1’ to achieve convolution only with ele-
ments from time  and earlier in the previous layer (Bai et al., 
2018). However, 1-D convolutions and causal convolutions re-
quire many layers and large filters to capture distant time events. 
To solve the inefficiency of requiring many layers and large filters 
to capture the distant time events, TCN utilizes dilated 
convolutions. Advanced by the wavenet, dilated convolutions in-
crease the receptive field by the order of magnitude with low 
computation cost (Oord et al., 2016). Dilation filter size is as 
Equation (9):

Dilation filter  Σ  (9)

Dilation size of layer   is , filter size is , and dilation rate is 
. Inserting zeros in the convolutional kernels, convolution is ap-
plied with  skipped inputs. The architecture of TCN, causal 
convolution and dilated convolution, is shown in <Figure 4>. By 
stacking several dilated convolution layers, TCN can achieve 
larger receptive fields with fewer layers compared to original con-
volution operations. 

3. Proposed Method

In this section, we discuss the proposed method and the training 
method in further detail. Main structure of the proposed method is a 
two phase network, with Phase Ⅰ including SACAE and Phase Ⅱ 

including TCN. Forecasting using two phases enable the model to se-
quentially learn the complex representative features of the original 
input data.

Phase Ⅰ extracts inter-relationships of MTS data with SACAE. 
Then, creates a condensed UTS representation of the input MTS 
data. During CAE process, the limitation of non-local dependency 
issue is mitigated by the self-attention inserted in the last and the 
first convolutional layer of the encoder and the decoder of CAE. 
The trained SACAE encoder passes the condensed UTS repre-
sentation of MTS data to Phase Ⅱ. TCN, trained on intra-relation-
ship of the data, then forecasts future time steps of the univariate 
representation time series. The forecasted time step is then de-
coded with the trained decoder of SACAE for MMTS operation 
and cause analysis. The structure of the proposed method is pre-
sented in <Figure 5>. 

3.1 Phase Ⅰ

The proposed method utilizes SACAE to capture inter-relation-
ship, the non-linear correlation existent in the input MTS data. 
SACAE encoder is consisted of multiple 1-D convolutional 
blocks and self-attention modules. Flatten layer is added in the fi-
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Figure 5. Overall Architecture of the Proposed Method

nal operation to flatten the contiguous range of dimensions into 
simple vector output.

MTS data is inputted into SACAE as channels while each 1-D 
convolution operation has kernel size of three, stride size of one, 
and padding size of one. By doing so, SACAE can preserve the 
overall length of the subsequent outputs after each convolutional 
block operations. The output which is the same length as the input 
enables TCN in Phase Ⅱ to forecast the next time step. This will 
be further discussed in the next section.

As data is passed along each convolutional block of SACAE 
encoder, the number of channels is exponentially decreased to ex-
tract abundant features of the original MTS input data. Each con-
volutional blocks of SACAE encoder decreases the number of 
channels of its input. Created channels then extract abundant in-
formation between individual variables of input MTS data. For 
example, data created from the same machinery of a manufactur-
ing process. While CAE is able to capture the non-linear correla-
tions of MTS data in the local field, the non-local dependency is-
sue makes it difficult to extract the global dependencies. To miti-
gate such problem, self-attention is added to the last and the first 
layers of CAE. Now, SACAE calculates the importance of ele-
ments in the feature map and captures the global dependencies. 
We include self-attention in the deeper layers of convolutional 
blocks to capture global information as shallow convolutional lay-
ers are prone to capture local features of the input.

3.2 Phase Ⅱ

TCN is composed of causal convolutions and dilated convolutions. 
Causal convolutions extract relevant historical information and fore-
casts the future output while dilated convolutions facilitates computa-

tional efficiency. In a previous study, TCN has been proven to outper-
form baseline architectures of sequence modeling tasks (Bai et al., 
2018). In the proposed method, a baseline TCN with few changes has 
been used. The role of TCN is to forecast the next time steps of the 
encoded UTS representation of the original MTS data. The module 
predicts the next time steps of the encoded data based on the multiple 
temporal convolutional layers. TCN is composed of several temporal 
block layers with number of hidden channels in each layer either 25 
or 50. The structure of TCN is presented in <Figure 3>. We increase 
the dilation rate  exponentially with the rate of  . Thus, according 
to the number of layers, the filter may cover the whole input sequence.

SACAE decoder reconstructs the forecasted time steps of the UTS 
representation data back to the original input data. Through analysis 
of self-attention block of the decoder, cause analysis of the effects of 
the input data to the forecasted outputs is possible. SACAE decoder 
is similar to the structure of SACAE encoder. Multiple convolution 
blocks and self-attention layers are embedded. While the overall 
structure of both encoder and decoder is similar, SACAE decoder uti-
lizes transposed 1-D convolutions.

4. Experiments

In this section, the proposed method is compared with various time 
series forecasting baseline models to evaluate its performance. 
Following conventional setups, ARIMA from statistical method, 
SVR from machine learning method, and LSTM from deep learning 
method is used for prediction evaluation comparison. Three standard 
metrics: modified mean absolute error (MMAE), modified mean 
squared error (MMSE), and modified R-Squared ( ) is used to 
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Figure 6. Non-linear Correlation Pair Grid of Six Variables in the Dataset and an Example of Explicit Non-linear Correlation of 
Variables x1_outputvoltage and y1_commandvelocity, Elaborated in <Figure 6>

measure the adequacy of the test prediction. Cause analysis is also 
conducted to evaluate the ability of the proposed method to extract 
important time steps of input data for forecast.

4.1 Datasets

The proposed method was verified on three real world datasets, 
namely CNC (Computer Numerical Control) (Sun, 2018), 
C-MAPPS (Turbofan Engine Degradation Simulation) (Saxena et 
al., 2008), and PMM (Predictive Maintenance Modelling dataset) 
(Zonta, 2020). CNC is milling machine experiment dataset in the 
System-level Manufacturing and Automation Research Testbed 
(SMART) at the University of Michigan. C-MAPPS is engine 
degradation simulation dataset collected by NASA. PMM is tele-
metry reading and error identification, maintenance, and failure 
dataset created by Microsoft. Data was collected from a CNC ma-
chine for variations of tool condition, feed rate, and clamping 
pressure. The data was collected from 18 experiments with 
100m/s sampling rate from four motors in the CNC milling 
machine. The proposed method was experimented on six varia-
bles of motor x and y as variables from motor z and spindle 

showed no significant variance in data. The data from C-MAPPS 
is collected from simulation of commercial turbofan engine data. 
Sampling was done at 1 Hz and consist of 30 engine and flight 
condition parameters. The proposed method was experimented 
with FD002_RUL data on fourteen parameters with 249 train time 
length and 20 test time length. PMM data was constructed for pre-
dicting problems caused by component failures. The data consist 
of eight variables including error identification time points and 
component maintenance time points. Experiment was conducted 
on 234 train length and 20 test length data. 

<Figure 6> illustrates the relationships between six variables of 
CNC dataset through a pair grid plot. The six variables exhibit 
non-linear correlation between each other. Variables such as x1_cur-
rentfeedback, x1_outputvoltage, and y1_outputvoltage exhibit clear-
er non-linear correlation with other variables in the dataset. 

To illustrate that x1_outputvoltage and y1_commandvelocity show 
clear non-linear correlation, we fitted a fourth order polynomial func-
tion as shown in <Figure 7> (Left) and witnessed that two variables 
do indeed inherit a non-linear correlation. However, fitting a linear 
regression to two variables in <Figure 7> (Right) do not properly repre-
sent the relationship between two variables. Drawing a conclusion that 
two variables inherit a complex non-linear correlation.
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Mothod
CNC C-MAPPS PMM

MAE MSE   MAE MSE   MAE MSE  

ARIMA 0.201 0.132 0.783 1.12 1.79 0.002 0.643 0.936 0.438
SVR 0.169 0.086 0.791 0.199 0.086 0.932 0.772 1.543 0.183

LSTM 0.195 0.121 0.779 1.33 2.81 0.013 0.631 0.924 0.434

Proposed Model 0.157 0.078 0.852 0.13 0.031 0.979 0.599 0.827 0.543

Table 1. Forecasting Performance of Baseline Models and the Proposed Method

Figure 7. Fitted Image of Fourth order Polynomial Regression of 
variables x1_outputvoltage and y1_commandvelocity 
(Left) illustrates a clear non-linear correlation between two 
variables while linear regression (Right) does not properly 
represent the relationship between two variables

4.2 MMTS Forecast

In this study, we compare the proposed method with baseline 
sequence modeling benchmarks. Statistical, machine learning, and 
deep learning methods are compared with the proposed method. 
Models used to compare are ARIMA, SVR, and LSTM, baseline 
sequence models well known in each method. The results suggest 
that the proposed method outperforms the baseline sequence mod-
eling architectures in capturing the high dimensional relationships 
of the variables.

Prediction accuracy was determined using MMAE, Equation 
(10), MMSE, Equation (11), and  , Equation (12). These 
evaluation metrics are commonly used performance metrics for 
time series forecasting and are modified for MMTS forecasting.

MMAE  



  




∑  

 
 


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

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
 




(12)

 is the number of samples in the test set and   is the number of 

variables in the test set,   is the mean   of  values,  
  is the ac-

tual output variable for    variable at time  and 

  is the pre-

dicted output for    variable at time .
Shown in <Table 1>, the proposed method shows superior fore-

cast capability and generally achieves better performance com-
pared to other forecast baseline models. As expected, the baseline 
deep learning model performs similar to the baseline statistical 
model. We expect that the performance difference will ex-
ponentially increase with the increase in volume of data.

The proposed method exhibits strong performance improve-
ment in C-MAPPS dataset. We conclude this is because of the 
ability of the proposed method to effectively learn the abundant 
non-linear correlations existent in C-MAPPS dataset. <Figure 8> 
illustrates the overall correlation between variables of C-MAPPS 
and PMM datasets. C-MAPPS with fourteen variables, except for 
sensor 15, show relatively high correlation values to other 
variables. On the contrary, PMM datasets, with about half the 
number of variables to C-MAPPS, do not show clearer correla-
tions within the dataset. 

The major advantage of the proposed method is its ability to 
learn inter-relationships, the non-linear relationship inherent in 
high-dimensional MTS data.

We now discuss the results of each model on forecasting in-
dividual variables to compare the ability of the proposed method 
to reflect the non-linear correlations. These results are presented 
in <Table 2>.

Prediction accuracy was determined by using mean square error 
(MSE), Equation (13). Compared to MMSE evaluation metric, 
MSE measures the prediction loss of individual variables in CNC 
dataset.

MSE  

∑  
  

 (13)

 is the number of samples in the test set,  is the actual output 
variable and   is the predicted output variable at time t.

<Table 2> represents MSE scores of the individual variables of 
CNC dataset forecast results of models. As shown in <Figure 6>, three 
variables x1_currentfeedback, x1_outputvoltage, and y1_outputvolt-
age of CNC dataset show strong explicit non-linear correlations with 
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Figure 8. Pearson Correlation Plot of C-MAPPS (left) and PMM (right) Dataset

x1_actualvelocity x1_commandvelocity x1_currentfeedback x1_outputvoltage y1_commandvelocity y1_outputvoltage

ARIMA 0.003 0.002 0.223 0.223 0.223 0.116
SVR 0.001 0.017 0.110 0.193 0.051 0.128

LSTM 0.025 0.023 0.256 0.256 0.025 0.135
Proposed method 0.012 0.010 0.105 0.180 0.048 0.114

Table 2. Individual Mean Squared Error (MSE) Score on CNC Dataset Variables to Evaluate Models on Reflecting Non-linear 
Correlation

Figure 9. Visualization of PMM Original Dataset with Error Identification (red), Maintenance Time Points (blue) and Predicted 20 Time 
Points (orange)

other variables. As an example, variables x1_outputvoltage and 
y1_commandvelocity has a complex correlation of a combination of 
linearity and non-linearity. Accordingly, the proposed method shows 
lowest MSE scores on all corresponding three variables. Also, shows 
the lowest MSE score on variable x1_currentfeedback, which has the 
clearest non-linear correlations amongst the six variables. The result 
of this experiment and the result of C-MAPPS dataset can conclude 
that the proposed method has strength in learning the non-linear corre-

lations in MTS data, whereas other baseline models do not.  

4.3 Cause Analysis

Besides forecasting MMTS, the proposed method also provides 
insights for cause analysis. For domain such as Prognostics and Health 
Management (PHM) in manufacturing, cause analysis is equally as 
important as forecasting future values. In real world applications, 
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cause analysis of MTS can aid engineers to discover root cause of acci-
dents and save time and effort. 

The self-attention map of SACAE decoder is used for cause 
analysis. The self-attention map mitigates the effect of long-term 
dependency problem and creates weights that help a model focus 
on important time steps in input data. It takes  number of inputs 
and outputs  number of outputs. The inputs will interact with 
each other to decide which time point is important and needs 
more attention. In our case, the self-attention focuses on time 
points that are crucial in forecasting the last 20 degradation points 
until failure of PMM dataset. 

As shown in <Figure 9>, PMM dataset contains error identi-
fication and maintenance time points. These time points indicate 
the points in input data where error has been identified and the 
points where major component maintenances have been required. 
There are fifteen error identification time points and nine compo-
nent maintenance time points. <Figure 9> shows visualization of 
original input data of PMM dataset with error identification, 
maintenance time points, and predicted time points.

The proposed method’s diagnostic performance on PMM data-
set is demonstrated on <Figure 10>. The self-attention module in 
SACAE decoder is used for cause analysis map. The cause analy-
sis map indicates the time points the proposed model references 
strongly to forecast the last degradation time points leading up to 
the major failure time point. The row of cause analysis map in-
dicates the last 20 degradation time points, and the column in-
dicates the input time points from start to up to 234 time points. 
The darker columns of the cause analysis map indicate time points 
the self-attention module judged is important for forecasting the 
last 20 degradation time points.

As shown in <Figure 10>, the cause analysis map and the 
zoom-in version demonstrate the ability to locate crucial points in 
the time map of the input data. The red dotted lines indicate the 
error identification points, and the blue dotted lines indicate the 
maintenance time points of the input data. The maintenance time 
points are considered more crucial time points than the error iden-
tification time points as major defect has occurred which led to 
actual maintenance actions. The zoom-in version shows the 
self-attention map from 85 to 110 time points. All 20 prediction 
times focus strongly on time points 89 to 91, time points 93 to 95, 
and prediction time points 16 and 17 also focus on 103 to 105 
time points. This indicates the model captures important time 
points of the input data to forecast the last degradation time points 
of PMM dataset. The cause analysis map has captured most major 
events of both error identification and maintenance time points. 
Especially, 7 out of 9 maintenance time points have been captured 
by the cause analysis map.

Figure 10. Original Cause Analysis and Zoom-in Cause Analysis Map 
of PMM dataset. Zoom-in Cause Analysis Map shows 85 
to 110 time points of the Original Cause Analysis Map. The 
red and blue dotted lines indicate major events in the 
machine history. The cause analysis map of SACAE 
decoder focuses on these events or time points leading up 
to these events

5. Conclusion

In this paper, we proposed a two phase MMTS forecasting us-
ing SACAE and TCN. The model adopts a two phase process 
where in Phase Ⅰ, self-attention and convolutional autoencoder 
are used to create a univariate representation of the MTS data. 
This univariate representation contains inter-relationships of MTS 
data. In Phase Ⅱ, TCN is used to forecast the next time steps 
based on the compressed univariate representation. Finally, the 
forecasted time steps are decoded by the trained decoder of 
SACAE to reconstruct into the future time steps of the original in-
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dividual variables. 
High dimensional time series data are created in manufacturing 

domains. It is essential to forecast individual variables as these 
values can be utilized to help forecast demands, provide decisive 
statistics to initiate timely maintenance, or provide specific mon-
itoring statistics. However, current baseline models cannot accu-
rately reflect the non-linear correlations among variables in the 
MTS data for MMTS forecasting. Compared to these methods, 
the proposed method is more efficient as its simple architecture 
utilizes methods that minimizes computation cost. E.g., the con-
volutional operations in SACAE, the 1×1 convolutional oper-
ations in the self-attention module, and the dilated convolutional 
operations in TCN. Also, we have proven that the proposed meth-
od has strength in capturing complex inter-relationships of MTS 
data. The results show the proposed method exhibits better fore-
casting of MMTS ability. As for cause analysis results, the pro-
posed model is tested on its ability to find causal time steps lead-
ing up to the final degradation operations. Finally, an end-to-end 
model, the proposed method is unique in that it operates as a 
MMTS forecasting model.

We have observed possibilities that varying CAE with differing 
improvements to the architecture may lead to improved 
performance. We plan to apply different methods to the module 
and conduct further experiments with various dataset as well. We 
expect the proposed method can be used with varying types of 
MTS data, outside the manufacturing domains as well.
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